Abstract

The Hartmann test is a well-known technique for testing large telescope mirrors. The Hartmann technique samples the wave front under analysis by use of a screen of uniformly spaced array of holes located at the pupil plane. The traditional technique used to gather quantitative data requires the measurement of the centroid of these holes as imaged near the paraxial focus. The deviation from its unaberrated uniform position is proportional to the slope of the wave-front asphericity. The centroid estimation is normally done manually with the aid of a microscope or a densitometer; however, newer automatic fringe-processing techniques that use the synchronous detection technique or the Fourier phase-estimation method may also be used. Here we propose a new technique based on a regularized phase-tracking (RPT) system to detect the transverse aberration in Hartmanngrams in a direct way. That is, it takes the dotted pattern of the Hartmanngram as input, and as output the RPT system gives the unwrapped transverse ray aberration in just one step. Our RPT is compared with the synchronous and the Fourier methods, which may be regarded as its closest competitors.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (16)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription