Abstract

A fiber-optic measurement system is described that allows ultrasound to be detected in fluids. It is based on a heterodyne interferometer, and the sensing element consists of a metal-coated fiber tip. The heterodyne technique permits direct acquisition of the sound pressure. The required ac photodetection is carried out with wide bandwidth, and the system provides high temporal and spatial resolution. For optimum performance the system parameters are matched to the sound-wave properties of the current application with the aid of theoretical and numerical calculations. The fiber-optic sensor system was applied to two problems of ultrasonic exposimetry in which the favorable features of the measurement technique were exploited. Shock waves from an electromagnetic lithotripter were investigated by use of the wide bandwidth of the system, and the subharmonic in an ultrasonic cleaner was detected, which indicates cavitation.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5, 218–320 (1980).
    [CrossRef]
  2. J. Staudenraus, W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
    [CrossRef]
  3. P. C. Beard, T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Perot interferometer,” Appl. Opt. 35, 663–675 (1996).
    [CrossRef] [PubMed]
  4. P. C. Beard, T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
    [CrossRef]
  5. Ch. Koch, “Coated fiber-optic hydrophone for ultrasonic measurement,” Ultrasonics 34, 687–689 (1996).
    [CrossRef]
  6. V. Wilkens, Ch. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37, 45–49 (1999).
    [CrossRef]
  7. W. Menssen, W. Molkenstruck, R. Reibold, “Fibre optic sensor system,” in Ultrasonics International 91, L. Clayton, ed. (Butterworth-Heinemann, Oxford, 1991), pp. 347–350.
    [CrossRef]
  8. Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
    [CrossRef]
  9. Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
    [CrossRef]
  10. H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).
  11. J.-P. Monchalin, “Optical Detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
    [CrossRef]
  12. B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
    [CrossRef]
  13. J. R. Buck, D. J. Healey, “Calibration of short-term frequency stability measuring apparatus,” Proc. IEEE 54, 305 (1966).
    [CrossRef]
  14. A. Tykulsky, “Spectral measurements of oscillators,” Proc. IEEE 54, 306 (1966).
    [CrossRef]
  15. K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988), Chap. 8.
    [CrossRef]
  16. K. Kikuchi, T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. QE-21, 1814–1818 (1985).
    [CrossRef]
  17. G. R. Harris, “Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency response,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 256–261 (1992).
    [CrossRef]
  18. J. Dakin, B. Culshaw, eds., Optical Fiber Sensors: Principles and Components (Artech House, Boston, Mass., 1988), Chap. 7.6.1.
  19. K. S. Suslik, Ultrasound: Its Chemical, Physical, and Biological Effects (VCH, Deefield Beach, Fla., 1988).
  20. A. D. Phelps, T. G. Leighton, “The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms,” Acust. Acta Acust. 83, 59–66 (1997).
  21. M. Hodnett, B. Zequiri, “A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: final project report,” (National Physical Laboratory, Teddington, UK, 1997).

1999 (1)

V. Wilkens, Ch. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37, 45–49 (1999).
[CrossRef]

1997 (4)

Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
[CrossRef]

Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
[CrossRef]

P. C. Beard, T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

A. D. Phelps, T. G. Leighton, “The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms,” Acust. Acta Acust. 83, 59–66 (1997).

1996 (2)

1993 (2)

J. Staudenraus, W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

1992 (1)

G. R. Harris, “Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency response,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 256–261 (1992).
[CrossRef]

1986 (1)

J.-P. Monchalin, “Optical Detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

1985 (1)

K. Kikuchi, T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. QE-21, 1814–1818 (1985).
[CrossRef]

1981 (1)

B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
[CrossRef]

1980 (1)

R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5, 218–320 (1980).
[CrossRef]

1966 (2)

J. R. Buck, D. J. Healey, “Calibration of short-term frequency stability measuring apparatus,” Proc. IEEE 54, 305 (1966).
[CrossRef]

A. Tykulsky, “Spectral measurements of oscillators,” Proc. IEEE 54, 306 (1966).
[CrossRef]

Auld, B. A.

B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
[CrossRef]

Ayter, S.

B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
[CrossRef]

Beard, P. C.

P. C. Beard, T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

P. C. Beard, T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Perot interferometer,” Appl. Opt. 35, 663–675 (1996).
[CrossRef] [PubMed]

Buck, J. R.

J. R. Buck, D. J. Healey, “Calibration of short-term frequency stability measuring apparatus,” Proc. IEEE 54, 305 (1966).
[CrossRef]

Eisenmenger, W.

J. Staudenraus, W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

Harris, G. R.

G. R. Harris, “Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency response,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 256–261 (1992).
[CrossRef]

Healey, D. J.

J. R. Buck, D. J. Healey, “Calibration of short-term frequency stability measuring apparatus,” Proc. IEEE 54, 305 (1966).
[CrossRef]

Hodnett, M.

M. Hodnett, B. Zequiri, “A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: final project report,” (National Physical Laboratory, Teddington, UK, 1997).

Kikuchi, K.

K. Kikuchi, T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. QE-21, 1814–1818 (1985).
[CrossRef]

Koch, Ch.

V. Wilkens, Ch. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37, 45–49 (1999).
[CrossRef]

Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
[CrossRef]

Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
[CrossRef]

Ch. Koch, “Coated fiber-optic hydrophone for ultrasonic measurement,” Ultrasonics 34, 687–689 (1996).
[CrossRef]

Leighton, T. G.

A. D. Phelps, T. G. Leighton, “The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms,” Acust. Acta Acust. 83, 59–66 (1997).

Ludwig, G.

Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
[CrossRef]

Menssen, W.

W. Menssen, W. Molkenstruck, R. Reibold, “Fibre optic sensor system,” in Ultrasonics International 91, L. Clayton, ed. (Butterworth-Heinemann, Oxford, 1991), pp. 347–350.
[CrossRef]

Mills, T. N.

P. C. Beard, T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

P. C. Beard, T. N. Mills, “Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry–Perot interferometer,” Appl. Opt. 35, 663–675 (1996).
[CrossRef] [PubMed]

Molkenstruck, W.

Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
[CrossRef]

Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
[CrossRef]

W. Menssen, W. Molkenstruck, R. Reibold, “Fibre optic sensor system,” in Ultrasonics International 91, L. Clayton, ed. (Butterworth-Heinemann, Oxford, 1991), pp. 347–350.
[CrossRef]

Monchalin, J.-P.

J.-P. Monchalin, “Optical Detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

Okoshi, T.

K. Kikuchi, T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. QE-21, 1814–1818 (1985).
[CrossRef]

Petermann, K.

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988), Chap. 8.
[CrossRef]

Phelps, A. D.

A. D. Phelps, T. G. Leighton, “The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms,” Acust. Acta Acust. 83, 59–66 (1997).

Phillips, R. L.

R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5, 218–320 (1980).
[CrossRef]

Reibold, R.

Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
[CrossRef]

W. Menssen, W. Molkenstruck, R. Reibold, “Fibre optic sensor system,” in Ultrasonics International 91, L. Clayton, ed. (Butterworth-Heinemann, Oxford, 1991), pp. 347–350.
[CrossRef]

Staudenraus, J.

J. Staudenraus, W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

Suslik, K. S.

K. S. Suslik, Ultrasound: Its Chemical, Physical, and Biological Effects (VCH, Deefield Beach, Fla., 1988).

Tan, M.

B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
[CrossRef]

Telle, H. R.

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

Tykulsky, A.

A. Tykulsky, “Spectral measurements of oscillators,” Proc. IEEE 54, 306 (1966).
[CrossRef]

Wilkens, V.

V. Wilkens, Ch. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37, 45–49 (1999).
[CrossRef]

Zequiri, B.

M. Hodnett, B. Zequiri, “A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: final project report,” (National Physical Laboratory, Teddington, UK, 1997).

Acust. Acta Acust. (1)

A. D. Phelps, T. G. Leighton, “The subharmonic oscillations and combination-frequency subharmonic emissions from a resonant bubble: their properties and generation mechanisms,” Acust. Acta Acust. 83, 59–66 (1997).

Appl. Opt. (1)

Electron. Lett. (2)

P. C. Beard, T. N. Mills, “Miniature optical fiber ultrasonic hydrophone using a Fabry–Perot polymer film interferometer,” Electron. Lett. 33, 801–803 (1997).
[CrossRef]

B. A. Auld, S. Ayter, M. Tan, “Filter detection of phase-modulated laser probe signals,” Electron. Lett. 17, 661–662 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Kikuchi, T. Okoshi, “Measurement of FM noise, AM noise, and field spectra of 1.3 µm InGaAsP DFB lasers and determination of the linewidth enhancement factor,” IEEE J. Quantum Electron. QE-21, 1814–1818 (1985).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

G. R. Harris, “Lithotripsy pulse measurement errors due to nonideal hydrophone and amplifier frequency response,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 256–261 (1992).
[CrossRef]

J.-P. Monchalin, “Optical Detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

Opt. Lett. (1)

R. L. Phillips, “Proposed fiber-optic acoustical probe,” Opt. Lett. 5, 218–320 (1980).
[CrossRef]

Proc. IEEE (2)

J. R. Buck, D. J. Healey, “Calibration of short-term frequency stability measuring apparatus,” Proc. IEEE 54, 305 (1966).
[CrossRef]

A. Tykulsky, “Spectral measurements of oscillators,” Proc. IEEE 54, 306 (1966).
[CrossRef]

Spectrochim. Acta Rev. (1)

H. R. Telle, “Stabilization and modulation schemes of laser diodes for applied spectroscopy,” Spectrochim. Acta Rev. 15, 301–327 (1993).

Ultrasonics (4)

Ch. Koch, G. Ludwig, W. Molkenstruck, “Calibration of an interferometric fiber tip sensor for ultrasound detection,” Ultrasonics 35, 297–303 (1997).
[CrossRef]

Ch. Koch, “Coated fiber-optic hydrophone for ultrasonic measurement,” Ultrasonics 34, 687–689 (1996).
[CrossRef]

V. Wilkens, Ch. Koch, “Fiber-optic multilayer hydrophone for ultrasonic measurement,” Ultrasonics 37, 45–49 (1999).
[CrossRef]

J. Staudenraus, W. Eisenmenger, “Fiber-optic probe hydrophone for ultrasonic and shock-wave measurements in water,” Ultrasonics 31, 267–273 (1993).
[CrossRef]

Ultrasound Med. Biol. (1)

Ch. Koch, W. Molkenstruck, R. Reibold, “Shock wave measurement using a calibrated interferometric fiber tip sensor,” Ultrasound Med. Biol. 23, 1259–1266 (1997).
[CrossRef]

Other (5)

W. Menssen, W. Molkenstruck, R. Reibold, “Fibre optic sensor system,” in Ultrasonics International 91, L. Clayton, ed. (Butterworth-Heinemann, Oxford, 1991), pp. 347–350.
[CrossRef]

K. Petermann, Laser Diode Modulation and Noise (Kluwer Academic, Dordrecht, The Netherlands, 1988), Chap. 8.
[CrossRef]

J. Dakin, B. Culshaw, eds., Optical Fiber Sensors: Principles and Components (Artech House, Boston, Mass., 1988), Chap. 7.6.1.

K. S. Suslik, Ultrasound: Its Chemical, Physical, and Biological Effects (VCH, Deefield Beach, Fla., 1988).

M. Hodnett, B. Zequiri, “A strategy for the development and standardisation of measurement methods for high power/cavitating ultrasonic fields: final project report,” (National Physical Laboratory, Teddington, UK, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for the heterodyne fiber-tip sensor system: LD, laser diode with emission frequency ν; M, partly reflecting mirror; ISO, optical isolator; AOM, acousto-optic modulator with driving frequency f AOM; PBS, polarizing beam splitter; MOD, piezoelectric transducer ring phase modulator; PolC, polarization controller; US, ultrasound signal; PD, photodiode; 2×, in-phase 1:1 power divider; Mix, double-balanced mixer; τ, delay line.

Fig. 2
Fig. 2

Maximum detectable frequency f 95% (top) and nonlinear distortion (bottom, f = 40 kHz) of the discriminator output versus inverse delay time 1/τ; insets, schematics of the corresponding carrier-frequency spectra.

Fig. 3
Fig. 3

Schematic of numerical calculation for determining system parameters: p i (t), i (f), input pressure; Δν(f), frequencydeviation; D(f, Δν), frequency discriminator; V m (t), m (f), voltage at measurement port; D const, scaling factor.

Fig. 4
Fig. 4

Pressure waveform of a shock wave.

Fig. 5
Fig. 5

Ratio between the calculated and the reference shock-wave parameters: positive peak pressure p max (solid curve), maximum negative pressure p min (dotted curve), and rise time τ r (dashed curve).

Fig. 6
Fig. 6

Measured pressure versus time of a shock wave; U exc = 19 kV, τ = 5 ns, BW = 70 MHz.

Fig. 7
Fig. 7

Measured pressure versus time of a shock wave; U exc = 19 kV, τ = 5 ns, BW = 20 MHz.

Fig. 8
Fig. 8

Power spectral density of the time-dependent pressure in an ultrasonic cleaner. Driving frequency f = 38.0 kHz; nonresonant case.

Fig. 9
Fig. 9

Power spectral density of the time-dependent pressure in an ultrasonic cleaner. Driving frequency f = 40.1 kHz; resonant case.

Tables (1)

Tables Icon

Table 1 Rise Time τr (ns) for Several Excitation Levels Obtained with Three Discriminator and Signal-Processing Configurations

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I=IM+IR+IMIR×cos2πfAOMt+2π nc02ν0δl+δνΔl,
pt=ρc ζt=ρcTδlt,
frf=dφdt=2πfAOM+2π 2ν0nc0δlt.
Uint=Uˆin expi2πtfAOM+Δνexpi2πft
Δν=2ν0nc0pˆTρc
UIFt=1/2UˆIF cosΦt,
Φt=0τ frftdt=0τ2πfAOM+2πΔν expi2πftdt.
UIFt=12 UˆIF sinΔνifexpi2πfτ-Δνifexpi2πft.
UIF=UˆIFΔνfsinπfτexpi2πft.
pit = p0 exp-αt1-exp-βt×sin2πfst1-t,  t > 0,
SIF,ν=SνUIFπτ sinπfFSR2,
Δν=BW/2×0.986.

Metrics