Abstract

Based on the Faraday effect for measuring ac current, we describe a fiber-optic sensor that uses laser-diode intensity modulation to perform heterodyne signal detection. The sensor output at the carrier frequency is used as a reference signal to normalize the results. The sensing element consists of a few coils low-birefringence fibers between polarizers. We built the current sensor described above and tested its performance—sensitivity and noise—as functions of the angle between polarizers.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Papp, H. Harm, “Magnetooptical current transformer. 1: principles,” Appl. Opt. 19, 3729–3734 (1980).
    [CrossRef] [PubMed]
  2. A. M. Smith, “Optical fibres for current measurement applications,” Opt. Laser Technol, 25–29 (1980).
    [CrossRef]
  3. A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
    [CrossRef]
  4. Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
    [CrossRef]
  5. F. Maystre, A. Bertholds, “Magneto-optic current sensor using a helical Fabry–Perot resonator,” Opt. Lett. 14, 587–592 (1989).
    [CrossRef] [PubMed]
  6. G. Frosio, R. Dänlicker, “Reciprocal reflection interferometer for a fiber-optic Faraday current sensor,” Appl. Opt. 33, 6111–6122 (1994).
    [CrossRef] [PubMed]
  7. A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
    [CrossRef]
  8. R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
    [CrossRef]
  9. P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
    [CrossRef]

1995 (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

1994 (1)

1989 (1)

1988 (1)

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

1986 (2)

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

1980 (2)

A. Papp, H. Harm, “Magnetooptical current transformer. 1: principles,” Appl. Opt. 19, 3729–3734 (1980).
[CrossRef] [PubMed]

A. M. Smith, “Optical fibres for current measurement applications,” Opt. Laser Technol, 25–29 (1980).
[CrossRef]

Akhavan Leilabady, P.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Bertholds, A.

Berwick, M.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Dänlicker, R.

Frosio, G.

Grattan, K. T. V.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Harm, H.

Hill, D. C.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

Jackson, D. A.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Jones, J. D. C.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Kersey, A. D.

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

Maystre, F.

Ning, Y. N.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Palmer, A. W.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Papp, A.

Rogers, A. J.

A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
[CrossRef]

Smith, A. M.

A. M. Smith, “Optical fibres for current measurement applications,” Opt. Laser Technol, 25–29 (1980).
[CrossRef]

Tatam, R. P.

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

Wang, Z. P.

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Wayte, A. P.

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Appl. Opt. (2)

J. Lightwave Technol. (2)

A. D. Kersey, D. A. Jackson, “Current sensing utilizing heterodyne detection of the Faraday effect in single-mode optical fiber,” J. Lightwave Technol. 4, 640–644 (1986).
[CrossRef]

R. P. Tatam, D. C. Hill, J. D. C. Jones, D. A. Jackson, “All-fiber-optic polarization state azimuth control: application to Faraday rotation,” J. Lightwave Technol. 6, 1171–1176 (1988).
[CrossRef]

Opt. Commun. (1)

P. Akhavan Leilabady, A. P. Wayte, M. Berwick, J. D. C. Jones, D. A. Jackson, “A pseudo-reciprocal fibre-optic Faraday rotation sensor: current measurement and data communication applications,” Opt. Commun. 59, 173–176 (1986).
[CrossRef]

Opt. Laser Technol (1)

A. M. Smith, “Optical fibres for current measurement applications,” Opt. Laser Technol, 25–29 (1980).
[CrossRef]

Opt. Lett. (1)

Rev. Sci. Instrum. (1)

Y. N. Ning, Z. P. Wang, A. W. Palmer, K. T. V. Grattan, D. A. Jackson, “Recent progress in optical current sensing techniques,” Rev. Sci. Instrum. 66, 3097–3111 (1995).
[CrossRef]

Other (1)

A. J. Rogers, “Optical fiber current measurement,” in Optical Fiber Sensor Technology, K. T. V. Grattan, B. T. Megitt, eds. (Chapman & Hall, London, 1995), pp. 421–439.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: L, laser diode; G, sinusoidal generator that drives the laser current supply; a and c, standard monomode optical fibers; b, four-turn coil of low-birefringence fibers; C, an electric conductor that carries the current i; P1 and P2, linear polarizers; θ, the angle between P1 and P2; R, the receptor (photodetector and analogic bandpass filters).

Fig. 2
Fig. 2

Sensor response I w-w 0 /I w as function of the applied current for different values of the angle θ. The continuous curves are the linear fit of the experimental data.

Fig. 3
Fig. 3

Mean amplitude of noise (expressed in amps) over a time interval of 3 min when the electric current through the conductor is zero, as a function of θ. The theoretical curve used to fit the experimental data is N(θ) = 4 + [5.9 cos(θ) + 0.5 sin(θ)]2, which corresponds to the assumption that the noise is proportional to the intensity of light circulating in the optical system.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

Δϕ=NVi,
IR=Itcos2θ+Δϕ=ItcosθcosΔϕ-sinθsinΔϕ2.
IRItcos2θ-2Δϕ sinθcosθItcos2θ-2NVi sinθcosθ.
it=i0 cosw0t+φ,
IRtI01+coswtcos2θ-2NVi0×cosw0t+φsinθcosθ,
IRtI0 cos2θ+I0 cos2θcoswt-NVI0i0 sinθcosθcosw+w0t+φ-NVI0i0 sinθcosθcosw-w0t-φ-2NVI0i0 cosw0t+φsinθcosθ.
Iw=I0 cos2θ,
Iw±w0=|NVI0i0 sinθcosθ|,
Iw±w0Iw|NVi0 tanθ|
IR=I0 sin2Δϕ,
Iw±w0IwNVi0E12-E1E2sinθcosθE12 cos2θ+E22 sin2θ+2E1E2 sinθcosθ,
Nθ  E1 cosθ+E2 sinθ2,

Metrics