Abstract

A new optical system with a resolution that is superior to the resolution of the usual optical systems with diffraction limit is presented. We introduce a newly generated narrow light beam that propagates for a long range while almost maintaining its beam width and show that the beam width is narrower than that of the diffraction limit of normal optics. Thus a super high resolution is achieved for a long range, e.g., a range of a few kilometers, by the use of a 10-cm-diameter telescope. The high resolution for long-range imaging can be obtained by a Galilean telescope with a negative eyepiece that has a spherical aberration. We demonstrate theoretically high-resolution imaging by using simple objects and assuming a telescope 10 cm in diameter and a visible wavelength. A comparison of simulation results by the conventional optical system and by the special optical system clearly shows the superiority of the new system.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. W. Lamberts, “Active imaging system: a long-range scanned laser,” Appl. Opt. 15, 1284–1289 (1976).
    [Crossref] [PubMed]
  2. M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).
  3. W. G. Driscall, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).
  4. J. H. McLeod, “The axicon: a new type of optical element,” J. Opt. Soc. Am. 44, 592–597 (1954).
    [Crossref]
  5. S. Fujiwara, “Optical properties of conic surfaces. I. Reflecting cone,” J. Opt. Soc. Am. 52, 287–292 (1962).
    [Crossref]
  6. D. B. Fenneman, D. R. Cruise, “Far-field illumination of targets by annular apertures,” J. Opt. Soc. Am. 65, 1300–1305 (1975).
    [Crossref]
  7. J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
    [Crossref]
  8. J. J. Durnin, “Exact solution for nondiffracting beams I: the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
    [Crossref]
  9. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17, 232–234 (1992).
    [Crossref] [PubMed]
  10. A. J. Cox, D. C. Dibble, “Nondiffracting beam from a spatially filtered Fabry–Perot resonator,” J. Opt. Soc. Am. A 9, 282–286 (1992).
    [Crossref]
  11. R. M. Herman, T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8, 932–942 (1991).
    [Crossref]
  12. R. B. Gwynn, D. A. Christensen, “Method for accurate optical alignment using diffraction rings from lenses with spherical aberration,” Appl. Opt. 32, 1210–1215 (1993).
    [Crossref] [PubMed]
  13. T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
    [Crossref] [PubMed]
  14. J. H. Erkkila, M. E. Rogers, “Diffracted fields in the focal volume of a converging wave,” J. Opt. Soc. Am. 71, 904–905 (1981).
    [Crossref]
  15. Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
    [Crossref]
  16. J. J. Stamnes, B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations,” Opt. Commun. 40, 81–85 (1981).
    [Crossref]
  17. A. Arimoto, “Intensity distribution of aberration-free diffraction patterns due to circular apertures in a large F-number optical system,” Opt. Acta 23, 245–250 (1976).
    [Crossref]
  18. N. G. Van Kampen, “The method of stationary phase and the method of Fresnel zone,” Physica 24, 437–444 (1958).
    [Crossref]
  19. S. W. Li, T. Aruga, “Deep focal depth imaging by a Galilean telescope,” in Digest of OSA Annual Meeting (Optical Society of America, Washington, D.C., 1998), FQ 16, p. 161.
  20. A. E. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).
  21. M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
    [Crossref]
  22. T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

1997 (1)

1993 (1)

1992 (2)

1991 (1)

1987 (2)

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
[Crossref]

J. J. Durnin, “Exact solution for nondiffracting beams I: the scalar theory,” J. Opt. Soc. Am. A 4, 651–654 (1987).
[Crossref]

1981 (3)

J. H. Erkkila, M. E. Rogers, “Diffracted fields in the focal volume of a converging wave,” J. Opt. Soc. Am. 71, 904–905 (1981).
[Crossref]

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[Crossref]

J. J. Stamnes, B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations,” Opt. Commun. 40, 81–85 (1981).
[Crossref]

1976 (2)

A. Arimoto, “Intensity distribution of aberration-free diffraction patterns due to circular apertures in a large F-number optical system,” Opt. Acta 23, 245–250 (1976).
[Crossref]

C. W. Lamberts, “Active imaging system: a long-range scanned laser,” Appl. Opt. 15, 1284–1289 (1976).
[Crossref] [PubMed]

1975 (1)

1970 (1)

M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
[Crossref]

1962 (1)

1958 (1)

N. G. Van Kampen, “The method of stationary phase and the method of Fresnel zone,” Physica 24, 437–444 (1958).
[Crossref]

1954 (1)

Aggarwal, A. K.

M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
[Crossref]

Arimoto, A.

A. Arimoto, “Intensity distribution of aberration-free diffraction patterns due to circular apertures in a large F-number optical system,” Opt. Acta 23, 245–250 (1976).
[Crossref]

Aruga, T.

T. Aruga, “Generation of long-range nondiffracting narrow light beams,” Appl. Opt. 36, 3762–3768 (1997).
[Crossref] [PubMed]

S. W. Li, T. Aruga, “Deep focal depth imaging by a Galilean telescope,” in Digest of OSA Annual Meeting (Optical Society of America, Washington, D.C., 1998), FQ 16, p. 161.

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Christensen, D. A.

Conrady, A. E.

A. E. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).

Cox, A. J.

Cruise, D. R.

D’Anna, J.

Dibble, D. C.

Durnin, J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
[Crossref]

Durnin, J. J.

Eberly, J. H.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
[Crossref]

Erkkila, J. H.

Fenneman, D. B.

Fujiwara, S.

Gwynn, R. B.

Herman, R. M.

Lamberts, C. W.

Li, R.

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Li, S. W.

S. W. Li, T. Aruga, “Deep focal depth imaging by a Galilean telescope,” in Digest of OSA Annual Meeting (Optical Society of America, Washington, D.C., 1998), FQ 16, p. 161.

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Li, Y.

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[Crossref]

McLeod, J. H.

Miceli, J. J.

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
[Crossref]

Rogers, M. E.

Sirohi, R. S.

M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
[Crossref]

Sodha, M. S.

M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
[Crossref]

Spjelkavik, B.

J. J. Stamnes, B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations,” Opt. Commun. 40, 81–85 (1981).
[Crossref]

Stamnes, J. J.

J. J. Stamnes, B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations,” Opt. Commun. 40, 81–85 (1981).
[Crossref]

Takabe, M.

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Van Kampen, N. G.

N. G. Van Kampen, “The method of stationary phase and the method of Fresnel zone,” Physica 24, 437–444 (1958).
[Crossref]

Wiggins, T. A.

Wolf, E.

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[Crossref]

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

Yoshikado, S.

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Appl. Opt. (3)

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (3)

Opt. Acta (2)

M. S. Sodha, A. K. Aggarwal, R. S. Sirohi, “The fluctuations of intensity at the focus of an annular aperture,” Opt. Acta 17, 623–629 (1970).
[Crossref]

A. Arimoto, “Intensity distribution of aberration-free diffraction patterns due to circular apertures in a large F-number optical system,” Opt. Acta 23, 245–250 (1976).
[Crossref]

Opt. Commun. (2)

Y. Li, E. Wolf, “Focal shifts in diffracted converging spherical waves,” Opt. Commun. 39, 211–215 (1981).
[Crossref]

J. J. Stamnes, B. Spjelkavik, “Focusing at small angular apertures in the Debye and Kirchhoff approximations,” Opt. Commun. 40, 81–85 (1981).
[Crossref]

Opt. Lett. (1)

Phys. Lev. Lett. (1)

J. Durnin, J. J. Miceli, J. H. Eberly, “Diffraction-free beams,” Phys. Lev. Lett. 58, 1499–1501 (1987).
[Crossref]

Physica (1)

N. G. Van Kampen, “The method of stationary phase and the method of Fresnel zone,” Physica 24, 437–444 (1958).
[Crossref]

Other (5)

S. W. Li, T. Aruga, “Deep focal depth imaging by a Galilean telescope,” in Digest of OSA Annual Meeting (Optical Society of America, Washington, D.C., 1998), FQ 16, p. 161.

A. E. Conrady, Applied Optics and Optical Design (Dover, New York, 1960).

M. Born, E. Wolf, Principles of Optics (Pergamon, London, 1975).

W. G. Driscall, W. Vaughan, eds., Handbook of Optics (McGraw-Hill, New York, 1978).

T. Aruga, S. W. Li, S. Yoshikado, M. Takabe, R. Li, “Nondiffracting narrow light beam with small atmospheric turbulence-influenced propagation” (Appl. Opt., to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Example of a normal spherical wave front and a distorted spherical wave front at the aperture of a telescope with a diameter of 10 cm. A wavelength of 0.5 µm is assumed. (a) Normal spherical wave front focused at a 1-km distance. (b) Distorted spherical wave front. The dotted curve shows a spherical wave front without spherical aberration. The spherical wave-front condition is obtained by changing the separation between the objective and the eyepiece of the telescope.

Fig. 2
Fig. 2

Example of the light-intensity profiles for the normal light beam and the narrow light beam of a long-range propagation. Each profile is obtained from the wave front of Fig. 1. (a) Light-intensity profiles for the usual beam focusing to a 1-km distance. Profiles 1 and 2 correspond to 1 (focused) and 1.5 km, respectively. (b) Light-intensity profiles for the long-range nondiffracting beam. Profiles 1, 2, 3, and 4 correspond to 500 m and 1, 1.5, and 2.0 km, respectively.

Fig. 3
Fig. 3

Three-dimensional light-intensity profiles for two cases: (a) Light-intensity profile by conventional beam focusing to a 1-km distance with a telescope with a diameter of 10 cm. (b) Light-intensity profile by the LRNB at 1 km with the same-diameter telescope that has a spherical aberration.

Fig. 4
Fig. 4

Imaging simulation by two methods. Two targets, letter Z and a pair of small points (with a 1-cm separation) set at a distance of 1 km from the telescope with a diameter of 10 cm, are assumed in the simulation. (a) Image by conventional beam focusing at a 1-km distance. (b) Image by the LRNB. The weak pattern in (b) results from sidelobes of the beam.

Fig. 5
Fig. 5

Light-intensity profile at 1 km by an annular aperture. A radial region of 0.7 ≤ ρ ≤ 0.9, which contributes mainly to generating the LRNB at 1 km (as the first Fresnel zone), was assumed, and the wave front of Fig. 1(b) was used.

Metrics