Abstract

The mechanical reliability of sensing glass fiber is one of the important problems in the practical use of fiber-optic sensors. To ensure long-term reliability on a mass-production level, a method of proof-testing is applied to a sensing glass fiber that will be subjected to mechanical deformation in its service situation. We propose to employ a higher strain level (screening level) in the proof-testing with a fiber-recoating technique that can suppress excessive damage during the testing. We consider a standard lifetime of 15 years of automotive applications and ensure a practical level of failure probability by a model calculation by using the strength data of a prototype fiber with the method of fracture-mechanics theory.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
    [CrossRef]
  2. C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
    [CrossRef]
  3. See, for example, G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery,” IEEE Trans. Instrum. Meas. 39, 247–250 (1990) and Refs. 4–6.
  4. L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
    [CrossRef]
  5. J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
    [CrossRef]
  6. G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
    [CrossRef]
  7. Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
    [CrossRef]
  8. M. Komachiya, H. Sonobe, S. Oho, M. Kurita, T. Nakazawa, T. Sasayama, “Multiplex in-cylinder pressure measurement utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 35, 1143–1150 (1996).
    [CrossRef] [PubMed]
  9. M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998).
    [CrossRef]
  10. M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).
  11. D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978).
    [CrossRef]
  12. A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974).
    [CrossRef]
  13. R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976).
    [CrossRef]
  14. R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977).
    [CrossRef]
  15. M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
    [CrossRef]
  16. M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein.
    [CrossRef]
  17. R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).
  18. M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
    [CrossRef]
  19. M. Muraoka, H. Abe, “Exponential law of small-crack growth in silica optical fibers,” in Proceedings of the International Mechanical Congress Exposition (American Society of Mechanical Engineers, New York, 1994), Vol. AMD-195, pp. 141–149.

1999

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

1998

1996

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein.
[CrossRef]

M. Komachiya, H. Sonobe, S. Oho, M. Kurita, T. Nakazawa, T. Sasayama, “Multiplex in-cylinder pressure measurement utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 35, 1143–1150 (1996).
[CrossRef] [PubMed]

1995

M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
[CrossRef]

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

1993

M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
[CrossRef]

1990

See, for example, G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery,” IEEE Trans. Instrum. Meas. 39, 247–250 (1990) and Refs. 4–6.

1985

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

1982

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

1978

D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978).
[CrossRef]

1977

R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977).
[CrossRef]

1976

R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976).
[CrossRef]

1974

A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974).
[CrossRef]

Abe, H.

M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein.
[CrossRef]

M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
[CrossRef]

M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
[CrossRef]

M. Muraoka, H. Abe, “Exponential law of small-crack growth in silica optical fibers,” in Proceedings of the International Mechanical Congress Exposition (American Society of Mechanical Engineers, New York, 1994), Vol. AMD-195, pp. 141–149.

Adams, R.

R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977).
[CrossRef]

Bakalidis, G. N.

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

Berthold, J. W.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

Bucaro, J. A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Cole, J. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Dandridge, A.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Davis, C. M.

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

Ebata, K.

M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
[CrossRef]

Evans, A. G.

A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974).
[CrossRef]

Fumino, T.

M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998).
[CrossRef]

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Giallorenzi, T. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Glavas, E.

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

Hancke, G. P.

See, for example, G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery,” IEEE Trans. Instrum. Meas. 39, 247–250 (1990) and Refs. 4–6.

Ishida, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

Kalish, D.

D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978).
[CrossRef]

Katsuyama, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

Kawakami, K.

Kobayashi, H.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

Kodama, A.

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Komachiya, M.

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998).
[CrossRef]

M. Komachiya, H. Sonobe, S. Oho, M. Kurita, T. Nakazawa, T. Sasayama, “Multiplex in-cylinder pressure measurement utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 35, 1143–1150 (1996).
[CrossRef] [PubMed]

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Kurihara, N.

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Kurita, M.

Li, S.

L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
[CrossRef]

Maurer, R. D.

R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976).
[CrossRef]

McMillan, P. W.

R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977).
[CrossRef]

Minamitani, R.

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

Mitsunaga, Y.

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

Muraoka, M.

M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein.
[CrossRef]

M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
[CrossRef]

M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
[CrossRef]

M. Muraoka, H. Abe, “Exponential law of small-crack growth in silica optical fibers,” in Proceedings of the International Mechanical Congress Exposition (American Society of Mechanical Engineers, New York, 1994), Vol. AMD-195, pp. 141–149.

Nakazawa, T.

Oho, S.

Olshansky, R.

R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976).
[CrossRef]

Priest, R. G.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Rashleigh, S. C.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Sakaguchi, T.

M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998).
[CrossRef]

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Sasayama, T.

Sheng, L.

L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
[CrossRef]

Sigel, G. H.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

Sonobe, H.

Tariyal, B. K.

D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978).
[CrossRef]

Teraoka, T.

M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
[CrossRef]

Tsalides, P.

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

Voglis, N. G.

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

Watanabe, S.

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

M. Komachiya, H. Sonobe, T. Fumino, T. Sakaguchi, K. Kawakami, S. Watanabe, T. Sasayama, “Knocking detection of a gasoline engine by utilizing an optical fiber with specific refractive-index composition,” Appl. Opt. 37, 1152–1158 (1998).
[CrossRef]

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

Wiederhorn, S. M.

A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974).
[CrossRef]

Xu, S.

L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
[CrossRef]

Yasukawa, A.

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

Zhu, L.

L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, G. H. Sigel, J. H. Cole, S. C. Rashleigh, R. G. Priest, “Optical fiber sensor technology,” IEEE J. Quantum Electron. QE-18, 626–665 (1982).
[CrossRef]

IEEE Trans. Instrum. Meas.

See, for example, G. P. Hancke, “A fiber-optic density sensor for monitoring the state-of-charge of a lead acid battery,” IEEE Trans. Instrum. Meas. 39, 247–250 (1990) and Refs. 4–6.

G. N. Bakalidis, E. Glavas, N. G. Voglis, P. Tsalides, “A low-cost fiber optic force sensor,” IEEE Trans. Instrum. Meas. 45, 328–331 (1996).
[CrossRef]

Int. J. Fract.

A. G. Evans, S. M. Wiederhorn, “Proof testing of ceramic materials—an analytical basis for failure prediction,” Int. J. Fract. 10, 379–392 (1974).
[CrossRef]

J. Am. Ceram. Soc.

D. Kalish, B. K. Tariyal, “Static and dynamic fatigue of a polymer-coated fused silica optical fiber,” J. Am. Ceram. Soc. 61, 518–523 (1978).
[CrossRef]

M. Muraoka, H. Abe, “Subcritical crack growth in silica optical fibers in a wide range of crack velocities,” J. Am. Ceram. Soc. 79, 51–57 (1996) and references therein.
[CrossRef]

M. Muraoka, K. Ebata, H. Abe, “Effect of humidity on small-crack growth in silica optical fibers,” J. Am. Ceram. Soc. 76, 1545–1550 (1993).
[CrossRef]

J. Appl. Phys.

R. Olshansky, R. D. Maurer, “Tensile strength and fatigue of optical fibers,” J. Appl. Phys. 47, 4497–4499 (1976).
[CrossRef]

Y. Mitsunaga, Y. Katsuyama, H. Kobayashi, Y. Ishida, “Failure prediction for long length optical fiber based on proof testing,” J. Appl. Phys. 53, 4847–4853 (1982).
[CrossRef]

J. Lightwave Technol.

J. W. Berthold, “Historical review of microbend fiber-optic sensors,” J. Lightwave Technol. 13, 1193–1199 (1995).
[CrossRef]

J. Mater. Sci.

R. Adams, P. W. McMillan, “Static fatigue in glass,” J. Mater. Sci. 12, 643–657 (1977).
[CrossRef]

Opt. Eng.

C. M. Davis, “Fiber optic sensors: an overview,” Opt. Eng. 24, 347–351 (1985).
[CrossRef]

Trans. Inst. Electr. Eng. Jpn.

R. Minamitani, M. Komachiya, A. Yasukawa, S. Watanabe, “Mechanical properties of a polyimide coat for fiber-optic sensors” Trans. Inst. Electr. Eng. Jpn. 119-E, 60–66 (1999) (in Japanese).

Trans. Jpn. Soc. Mech. Eng. A

M. Muraoka, H. Abe, T. Teraoka, “Probabilistic failure prediction for silica optical fibers based on the exponential law,” Trans. Jpn. Soc. Mech. Eng. A 61, 682–689 (1995) (in Japanese).
[CrossRef]

Other

L. Sheng, S. Li, S. Xu, L. Zhu, “Studies of displacement sensing based on the deformation loss of an optical fiber ring,” in International Conference on Optical Fiber Sensors in China OFS(C) ’91, B. Culshaw, Y. Liao, eds., Proc. SPIE1572, 273–278 (1991).
[CrossRef]

M. Komachiya, N. Kurihara, A. Kodama, T. Sakaguchi, T. Fumino, S. Watanabe, “A method of misfire detection by superposing outputs of combustion pressure sensors,” SAE paper 982588 (Society of Automotive Engineers, Warrendale, Pa., 1998).

M. Muraoka, H. Abe, “Exponential law of small-crack growth in silica optical fibers,” in Proceedings of the International Mechanical Congress Exposition (American Society of Mechanical Engineers, New York, 1994), Vol. AMD-195, pp. 141–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Inert strength change in a fiber due to applied stress.

Fig. 2
Fig. 2

On-line scheme of proof-testing.

Fig. 3
Fig. 3

Molecular structure of the polyimide for the prototype fiber coating.17

Fig. 4
Fig. 4

Cross-sectional view of the recoated fiber.

Fig. 5
Fig. 5

Weibull plot of the tensile-strength data of the prototype fiber.

Fig. 6
Fig. 6

Test scheme of the tensile-strength test.

Fig. 7
Fig. 7

Results of dynamic fatigue measurements for the prototype fiber.

Fig. 8
Fig. 8

Model of a fiber-optic sensing system with a multiplex bending structure of a sensing fiber.

Fig. 9
Fig. 9

Calculated relationship between the lifetime and the allowable strain of the prototype fiber: solid curve, conditions in Table 2; dotted curves, different values of the screening strain ε p .

Tables (2)

Tables Icon

Table 1 Results from Measurement of Parameter Np for the Prototype Fiber

Tables Icon

Table 2 Values of Parameters for the Model Calculation

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

da/dt=AKIn,
KI=Yσa,
SKIC/Ya.
NSS/S0m,
F=1-exp-LNσ.
m=mn+1/n-2,
T=1-ln1-FsLNpn+1/m-1εp/εsntp,
ln σd=1+n-1 lndσ/dt+1+n-1 ln kd,
Sin-2-Sfn-2=σnt/B,
B2/AY2n-2KICn-2,
σpntp/B=Spin-2-Spfn-2,
σsnts/B=Ssin-2-Ssfn-2, Ssin-2,
Spf=Ssi
Spf>σp,
Spf min=σp.
σpntp/B=Spi minn-2-Spf minn-2,
Fs=1-exp-LNi-Np,
NiNSpi,
NpNSpi min,
Ni=σpntp/B+σsnts/B1/n-2S0m.
Np=σpntp/B+σpn-21/n-2S0m.
ts=1+C1-ln1-FsLNpn-2/m-1σp/σsntp,
CB/σp2tp.
C0,

Metrics