Abstract

The testing of a fiber-optic distributed-strain sensor attached to a simple structural member is reported. A Brillouin scattering-based sensor system was used to measure both tensile and compressive strains along the length of a cantilever beam subjected to various loads. The sensing fiber was attached to the beam in such a way that some sections experienced uniform strain, whereas others were subjected to a nonuniform strain distribution. A spatial resolution of 0.4 m was used, and a measurement precision of approximately ±50 µε was achieved.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).
  2. X. Bao, D. J. Web, D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
    [CrossRef] [PubMed]
  3. A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.
  4. T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
    [CrossRef]
  5. D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
    [CrossRef]
  6. J. Gere, S. P. Timoshenko, Mechanics of Materials (PWS-Kent, Boston, Mass., 1990).
  7. A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

1997 (1)

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

1993 (1)

Bao, X.

X. Bao, D. J. Web, D. A. Jackson, “22-km distributed temperature sensor using Brillouin gain in an optical fiber,” Opt. Lett. 18, 552–554 (1993).
[CrossRef] [PubMed]

M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).

A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

Bremner, T. W.

A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).

Brown, A.

M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).

A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

DeMerchant, M.

A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).

Facchini, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Fellay, A.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Garus, D.

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Gere, J.

J. Gere, S. P. Timoshenko, Mechanics of Materials (PWS-Kent, Boston, Mass., 1990).

Gogolla, T.

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Jackson, D. A.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Krebber, K.

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Niklès, M.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Robert, P.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Schliep, F.

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Taleda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

Thévenaz, L.

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

Timoshenko, S. P.

J. Gere, S. P. Timoshenko, Mechanics of Materials (PWS-Kent, Boston, Mass., 1990).

Web, D. J.

J. Lightwave Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Taleda, Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296–1302 (1995).
[CrossRef]

D. Garus, T. Gogolla, K. Krebber, F. Schliep, “Brillouin optical fiber frequency domain analysis for distributed temperature and strain measurements,” J. Lightwave Technol. 15, 654–662 (1997).
[CrossRef]

Opt. Lett. (1)

Other (4)

A. Fellay, L. Thévenaz, M. Facchini, M. Niklès, P. Robert, “Distributed sensing using Brillouin scattering: towards ultimate resolution,” in Optical Fiber Sensors, Vol. 16 of 1997 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1997), pp. 324–327.

J. Gere, S. P. Timoshenko, Mechanics of Materials (PWS-Kent, Boston, Mass., 1990).

A. Brown, M. DeMerchant, X. Bao, T. W. Bremner, “Advances in distributed sensing using Brillouin scattering,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 294–300 (1998).

M. DeMerchant, A. Brown, X. Bao, T. W. Bremner, “Automated system for distributed sensing,” in Smart Structures and Materials 1998: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, R. O. Claus, W. B. Spillman, eds., Proc. SPIE3330, 315–322 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Sensor-system configuration.

Fig. 2
Fig. 2

Top and side views of the experimental apparatus used to test the sensor system.

Fig. 3
Fig. 3

Strain-load response of the beam at two locations as measured by use of 0.4-m-long discrete sensors. The predicted relations are also shown (dashed and solid curves).

Fig. 4
Fig. 4

Strain distribution along the length of the beam at various loads as measured by use of the six 0.4-m-long discrete sensors. The predicted distributions are also shown (solid curves).

Fig. 5
Fig. 5

Comparison of the beam’s strain-load response at the fixed end as measured by the sensing system and by a conventional strain gauge. The sensor data shown are from one of the 0.4-m-long discrete sensors.

Fig. 6
Fig. 6

Strain-load response of the beam at two locations as measured by use of the continuously bonded fiber with a 0.4-m spatial resolution. The predicted relations are also show (solid and dashed curves).

Fig. 7
Fig. 7

Strain distribution along the length of the beam at various loads as measured at 12 locations along a continuously bonded fiber by use of a 0.4-m spatial resolution. The predicted distributions are also shown (solid curves).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Mx=PL-x,
ε=MyEI,
ε=PL-xyEI.

Metrics