Abstract

We demonstrate a fiber Bragg grating (FBG) sensor with controllable sensitivity by connecting two metal strips that have different temperature-expansion coefficients. By changing the lengths of the metal strips we successfully controlled and improved the temperature sensitivity to 3.3 times of that of bare FBG.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
    [CrossRef]
  3. G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
    [CrossRef]

1998 (1)

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

1997 (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

1992 (1)

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Berkoff, T. A.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Chuang, T. J.

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Lin, G.

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

Morey, W. W.

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Shih, M. C.

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

Wang, L.

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

Yang, C. C.

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

Electron. Lett. (1)

A. D. Kersey, T. A. Berkoff, W. W. Morey, “High resolution fiber Bragg grating based strain sensor with interferometric wavelength shift detection,” Electron. Lett. 28, 236–238 (1992).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

G. Lin, L. Wang, C. C. Yang, M. C. Shih, T. J. Chuang, “Thermal performance of metal-clad fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 10, 406–408 (1998).
[CrossRef]

J. Lightwave Technol. (1)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442–1463 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two-metal-attached FBG temperature sensor. As the temperature increases, the elongation of metal 1, ΔL, is almost concentrated on FBG 1, assuming that metal 2 is stiff enough to behave as a rigid body; i.e., the tension on metal 1 is almost entirely transferred to FBG 1. Another FBG (FBG 2) was fabricated as a reference to enable us to check the improvement in temperature sensitivity.

Fig. 2
Fig. 2

Transmission spectrum at temperatures of 31, 51, and 91 °C. As the temperature increased, the dips were separated, and that of FBG 1 shifted faster to a longer wavelength than that of FBG 2.

Fig. 3
Fig. 3

Bragg wavelength shift versus temperature for several lengths L of lead. When the length of metal 1 was 100 mm, the sensitivity was increased to 3.3 times of that of the bare FBG.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λB=2neffΛ,
ΔλB=2ΔneffΛ+2neffΔΛ.

Metrics