Abstract

We have constructed and tested a novel particle sizer that employs particle counting (the time-domain approach) rather than the ensemble-diffraction approach that currently dominates the market in atmospheric-dust particle sizers. The method does not depend on mechanical devices to restrict particles within the sampling volume but instead allows for optical isolation of the sampling volume. This technique is useful for atmospheric-dust measurements for which nonobtrusive measurement is often desirable.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Stockham, E. G. Fochtman, Particle Size Analysis (Ann Arbor Science Publishers, Ann Arbor, Mich., 1997).
  2. V. M. Kustov, “Optical methods for microscopic particle-size measurements,” M. S. thesis (Texas Tech University, Lubbock, Tex., 1997).
  3. A. Ben-David, B. M. Herman, “Methods for determining particle size distribution by nonlinear inversion of backscattered radiation,” Appl. Opt. 24, 1037–1042 (1985).
    [CrossRef]
  4. M. Lipsett, S. Hurley, B. Ostro, “Winter air pollution and emergency visits for asthma in the San Francisco Bay area,” in Proceedings of an International Specialty Conference Hosted by Air & Waste Management Association (The Air & Waste Management Association, Pittsburgh, Pa., 1995), pp. 105–110.
  5. C. R. Parker, Aerosol Science and Technology (McGraw-Hill, New York, 1993).
  6. Malvern Instruments, Ltd., Malvern, Worcs., England.
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).
  8. D. A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4883–4888 (1991).
    [CrossRef]
  9. J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).
  10. L. Molter, G. Lindenthal, “How to measure the fractional grade efficiency correctly for ISO 9000,” Filtration Separation 32, 751–759 (1995).
    [CrossRef]
  11. G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).
  12. N. A. Fuchs, The Mechanics of Aerosols (Dover, New York, 1989).
  13. M. Bottlinger, H. Umhauer, “Modeling of light scattering by irregularly shaped particles using a ray-tracing method,” Appl. Opt. 30, 4732–4738 (1991).
    [CrossRef] [PubMed]
  14. C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
    [CrossRef]
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  16. J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics (McGraw-Hill, New York, 1995).

1996 (1)

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

1995 (1)

L. Molter, G. Lindenthal, “How to measure the fractional grade efficiency correctly for ISO 9000,” Filtration Separation 32, 751–759 (1995).
[CrossRef]

1991 (2)

M. Bottlinger, H. Umhauer, “Modeling of light scattering by irregularly shaped particles using a ray-tracing method,” Appl. Opt. 30, 4732–4738 (1991).
[CrossRef] [PubMed]

D. A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4883–4888 (1991).
[CrossRef]

1985 (1)

1977 (1)

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Abbot, D.

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Arnold, J. C.

J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics (McGraw-Hill, New York, 1995).

Beer, J. M.

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Ben-David, A.

Bottlinger, M.

Fochtman, E. G.

J. D. Stockham, E. G. Fochtman, Particle Size Analysis (Ann Arbor Science Publishers, Ann Arbor, Mich., 1997).

Fuchs, N. A.

N. A. Fuchs, The Mechanics of Aerosols (Dover, New York, 1989).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

Heffels, C. M. G.

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

Heitzmann, D.

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

Herman, B. M.

Hurley, S.

M. Lipsett, S. Hurley, B. Ostro, “Winter air pollution and emergency visits for asthma in the San Francisco Bay area,” in Proceedings of an International Specialty Conference Hosted by Air & Waste Management Association (The Air & Waste Management Association, Pittsburgh, Pa., 1995), pp. 105–110.

Keiser, G.

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).

Kustov, V. M.

V. M. Kustov, “Optical methods for microscopic particle-size measurements,” M. S. thesis (Texas Tech University, Lubbock, Tex., 1997).

Lindenthal, G.

L. Molter, G. Lindenthal, “How to measure the fractional grade efficiency correctly for ISO 9000,” Filtration Separation 32, 751–759 (1995).
[CrossRef]

Lipsett, M.

M. Lipsett, S. Hurley, B. Ostro, “Winter air pollution and emergency visits for asthma in the San Francisco Bay area,” in Proceedings of an International Specialty Conference Hosted by Air & Waste Management Association (The Air & Waste Management Association, Pittsburgh, Pa., 1995), pp. 105–110.

McCreath, G. C.

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Milton, J. S.

J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics (McGraw-Hill, New York, 1995).

Molter, L.

L. Molter, G. Lindenthal, “How to measure the fractional grade efficiency correctly for ISO 9000,” Filtration Separation 32, 751–759 (1995).
[CrossRef]

Ostro, B.

M. Lipsett, S. Hurley, B. Ostro, “Winter air pollution and emergency visits for asthma in the San Francisco Bay area,” in Proceedings of an International Specialty Conference Hosted by Air & Waste Management Association (The Air & Waste Management Association, Pittsburgh, Pa., 1995), pp. 105–110.

Parker, C. R.

C. R. Parker, Aerosol Science and Technology (McGraw-Hill, New York, 1993).

Ross, D. A.

D. A. Ross, “Focused laser beam effects in optical particle sizing by dynamic light scattering,” Appl. Opt. 30, 4883–4888 (1991).
[CrossRef]

Scarlett, B.

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

Stockham, J. D.

J. D. Stockham, E. G. Fochtman, Particle Size Analysis (Ann Arbor Science Publishers, Ann Arbor, Mich., 1997).

Swithenbank, J.

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Taylor, D. S.

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Umhauer, H.

Verheijen, P. J. T.

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

Appl. Opt. (3)

Filtration Separation (1)

L. Molter, G. Lindenthal, “How to measure the fractional grade efficiency correctly for ISO 9000,” Filtration Separation 32, 751–759 (1995).
[CrossRef]

Part. Part. Syst. Charact. (1)

C. M. G. Heffels, P. J. T. Verheijen, D. Heitzmann, B. Scarlett, “Correction of the particle shape on the size distribution measured with laser diffraction instrument,” Part. Part. Syst. Charact. 13, 271–279 (1996).
[CrossRef]

Prog. Astronaut. Aeronaut. (1)

J. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, G. C. McCreath, “A laser diagnostic for the measurement of droplet in a particle size distribution,” Prog. Astronaut. Aeronaut. 53, 421–447 (1977).

Other (10)

J. D. Stockham, E. G. Fochtman, Particle Size Analysis (Ann Arbor Science Publishers, Ann Arbor, Mich., 1997).

V. M. Kustov, “Optical methods for microscopic particle-size measurements,” M. S. thesis (Texas Tech University, Lubbock, Tex., 1997).

M. Lipsett, S. Hurley, B. Ostro, “Winter air pollution and emergency visits for asthma in the San Francisco Bay area,” in Proceedings of an International Specialty Conference Hosted by Air & Waste Management Association (The Air & Waste Management Association, Pittsburgh, Pa., 1995), pp. 105–110.

C. R. Parker, Aerosol Science and Technology (McGraw-Hill, New York, 1993).

Malvern Instruments, Ltd., Malvern, Worcs., England.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, New York, 1996).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

J. S. Milton, J. C. Arnold, Introduction to Probability and Statistics (McGraw-Hill, New York, 1995).

G. Keiser, Optical Fiber Communications (McGraw-Hill, New York, 1991).

N. A. Fuchs, The Mechanics of Aerosols (Dover, New York, 1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Block diagram of the optical setup of the particle sizer.

Fig. 2
Fig. 2

Block diagram of the electrical part of the sizer.

Fig. 3
Fig. 3

Partial illumination rejection technique. (a) Particle that is not in the central part of the beam is rejected as invalid data; (b) particle that is at least partially in the central region is measured: 1, area seen by control detector; 2, area seen by measuring detector; 3, particle.

Fig. 4
Fig. 4

Imaging system employed to isolate the interaction region optically.

Fig. 5
Fig. 5

Output signal from the measuring detector when a piece of optical fiber transits the interaction region.

Tables (5)

Tables Icon

Table 1 Simulation of our Device’s Performance

Tables Icon

Table 2 Distribution of 0–40-µm Particles Provided by Powder Technology

Tables Icon

Table 3 Distribution of 0–20-µm Particles Provided by Powder Technology

Tables Icon

Table 4 Distributions of 0–40-µm Particles Measured by Our Device

Tables Icon

Table 5 Distributions of 0–20-µm Particles Measured by Our Device

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Iρ=β2x42J1ρρ2.
Ix, y=exp-2x2+y2w2.
Ix, y=exp-2qpx cos α2w2exp-2y2w2,
Dp=2 sin ψ cos ϕsinψ+ϕcosψ-ϕ Ap, Ds=2 sin ψ cos ϕsinψ+ϕ As, Rp=tanϕ-ψtanψ+ϕ Ap, Rs=sinϕ-ψsinψ+ϕ As,
sin ϕsin ψ=n2n1,
U0x1, y1=exp-x12+y12w2.
Ux0, y0=expjkzjλz Ux0,y1×expj k2zx0-x12+y0-y12dx1dy1.
LB=1+R-1-Rexp2Zα/2/n-31/21 + R + 1 - Rexp2Zα/2/n - 31/2,
UB=1+R-1-Rexp-2Zα/2/n-31/21 + R + 1 - Rexp-2Zα/2/n - 31/2.
CIN=UB-LB,

Metrics