Abstract

Angle-resolved scattering (ARS) intensities were measured in the backscattering hemisphere for the (1 0 0) and (1 1 1) faces of GaAs single crystals. Three epitaxial layers were deposited onto the GaAs (1 0 0) single-crystalline wafers. The laser elastic light scattering shows the presence of a regular surface microrelief whose orientation corresponds to the crystallographic axes in the surface plane. We studied the statistical properties of this microrelief and determined the parameters that characterize the surface. We propose to use the ARS ratio for two wavelengths (in our case, 632.8 and 441.6 nm) to determine the topographical properties of scattering and to study crystal surface defects.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).
  2. J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Optical Engineering Press, Bellingham, Wash., 1995).
    [CrossRef]
  3. D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.
  4. K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
    [CrossRef]
  5. J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
    [CrossRef]
  6. G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
    [CrossRef]
  7. F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
    [CrossRef]
  8. F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
    [CrossRef]
  9. F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
    [CrossRef]
  10. G. E. Domashev, Yu. M. Shirshov, V. A. Sterligov, Yu. V. Subbota, S. V. Svechnicov, “Atomic structure display of a real silicon surface under light scattering,” Appl. Opt. 34, 2367–2371 (1995).
    [CrossRef] [PubMed]
  11. R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
    [CrossRef]
  12. T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
    [CrossRef]
  13. Y. Nanishi, S. Ishida, T. Honda, eds., “Inhomogeneous GaAs FET threshold voltages related to dislocation distribution,” Jpn. J. Appl. Phys. 2, Lett. 21, L335–L337 (1982).
    [CrossRef]
  14. Y. Matsumoto, H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. 21, L515–L517 (1982).
    [CrossRef]
  15. Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
    [CrossRef]
  16. J. M. Elson, J. M. Bennett, “Relationship between the angular dependence of scattering and the statistical properties of smooth optical surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
    [CrossRef]
  17. J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
    [CrossRef]
  18. J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983).
    [CrossRef] [PubMed]
  19. J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
    [CrossRef]
  20. J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
    [CrossRef] [PubMed]
  21. E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).
  22. L. Mattsson, J. Ingers, J. M. Bennett, “Wavelength dependence of angle-resolved scattering in the extreme-ultraviolet-visible region,” Appl. Opt. 33, 3523–3532 (1994).
    [CrossRef] [PubMed]
  23. “Single-crystalline gallium arsenide wafers,” (Research and Production Association, ELMA, Moscow, 1987).
  24. D. Scannell, D. Smith, “Scribing compound semiconductors: an application primer,” Microelectron. Manufacturing Testing 11, 10–11 (1988).
  25. O. I. Bochkin, Mechanical Processing of Semiconductor Materials (Vysshaya Shkola, Moscow, 1983; in Russian).

1995 (1)

1994 (2)

J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
[CrossRef]

L. Mattsson, J. Ingers, J. M. Bennett, “Wavelength dependence of angle-resolved scattering in the extreme-ultraviolet-visible region,” Appl. Opt. 33, 3523–3532 (1994).
[CrossRef] [PubMed]

1993 (6)

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993).
[CrossRef] [PubMed]

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

1988 (1)

D. Scannell, D. Smith, “Scribing compound semiconductors: an application primer,” Microelectron. Manufacturing Testing 11, 10–11 (1988).

1983 (3)

Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
[CrossRef]

J. M. Elson, J. P. Rahn, J. M. Bennett, “Relationship of the total integrated scattering from multilayer-coated optics to angle of incidence, polarization, correlation length, and roughness cross-correlation properties,” Appl. Opt. 22, 3207–3219 (1983).
[CrossRef] [PubMed]

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

1982 (3)

Y. Nanishi, S. Ishida, T. Honda, eds., “Inhomogeneous GaAs FET threshold voltages related to dislocation distribution,” Jpn. J. Appl. Phys. 2, Lett. 21, L335–L337 (1982).
[CrossRef]

Y. Matsumoto, H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. 21, L515–L517 (1982).
[CrossRef]

R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
[CrossRef]

1979 (2)

1978 (1)

J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
[CrossRef]

Aspnes, D. E.

J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
[CrossRef]

Beam, E. A.

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

Bennett, J. M.

Blunt, R. T.

R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
[CrossRef]

Bochkin, O. I.

O. I. Bochkin, Mechanical Processing of Semiconductor Materials (Vysshaya Shkola, Moscow, 1983; in Russian).

Celii, F. G.

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

Chang, R. P. H.

J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
[CrossRef]

Church, E. L.

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).

Clark, S.

R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
[CrossRef]

Domashev, G. E.

Egelhaaf, H.-J.

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

Elson, J. M.

Emori, H.

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

Epler, J.

J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
[CrossRef]

Filesses, L. A.

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

Fukuda, T.

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

Glasper, J. L.

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

Haiber, J.

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

Ingers, J.

Ishida, S.

Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
[CrossRef]

Kad, Y. C.

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

Lege, R.

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

Liu, H. Y.

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

Matsumoto, Y.

Y. Matsumoto, H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. 21, L515–L517 (1982).
[CrossRef]

Matsumura, T.

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

Mattsson, L.

L. Mattsson, J. Ingers, J. M. Bennett, “Wavelength dependence of angle-resolved scattering in the extreme-ultraviolet-visible region,” Appl. Opt. 33, 3523–3532 (1994).
[CrossRef] [PubMed]

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

Mirabelli, E.

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

Miyazawa, S.

Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
[CrossRef]

Nanishi, Y.

Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
[CrossRef]

Oelkrug, D.

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

Pidduck, A. J.

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

Rahn, J. P.

Scannell, D.

D. Scannell, D. Smith, “Scribing compound semiconductors: an application primer,” Microelectron. Manufacturing Testing 11, 10–11 (1988).

Schowalter, L. J.

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

Shirshov, Yu. M.

Sigg, H.

J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
[CrossRef]

Smith, D.

D. Scannell, D. Smith, “Scribing compound semiconductors: an application primer,” Microelectron. Manufacturing Testing 11, 10–11 (1988).

Smith, G. W.

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

Sochtig, J.

J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
[CrossRef]

Spowart, J.

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

Stauch, H.

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

Sterligov, V. A.

Stirland, D. J.

R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
[CrossRef]

Stover, J. C.

Subbota, Yu. V.

Svechnicov, S. V.

Takacs, P. Z.

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).

Terashima, K.

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

Theeten, J. B.

J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
[CrossRef]

Watanabe, H.

Y. Matsumoto, H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. 21, L515–L517 (1982).
[CrossRef]

Whitenhou, C. R.

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

Wu, Z.-C.

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

Yang, K.

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

J. Epler, J. Sochtig, H. Sigg, “Evolution of surface topography during metalorganic vapor phase epitaxy of InP/InGaAs/InP quantum well heterostructures,” Appl. Phys. Lett. 65, 1949–1951 (1994).
[CrossRef]

F. G. Celii, E. A. Beam, H. Y. Liu, Y. C. Kad, “In situ detection of relaxation in InGaAs/GaAs strained layer superlattices using laser light scattering,” Appl. Phys. Lett. 62, 2705–2707 (1993).
[CrossRef]

IEEE Trans. Electron Devices (1)

R. T. Blunt, S. Clark, D. J. Stirland, “Dislocation density and sheet resistance variations across semi-insulating GaAs wafers,” IEEE Trans. Electron Devices ED-29, 1039–1045 (1982).
[CrossRef]

J. Appl. Phys. (1)

J. B. Theeten, D. E. Aspnes, R. P. H. Chang, “A new resonant ellipsometric technique for characterizing the interface between GaAs and its plasma-grown oxide,” J. Appl. Phys. 49, 6097–6102 (1978).
[CrossRef]

J. Cryst. Growth (1)

G. W. Smith, A. J. Pidduck, C. R. Whitenhou, J. L. Glasper, J. Spowart, “Real time laser light scattering studies of surface topography development during GaAs MBE growth,” J. Cryst. Growth 127, 966–972 (1993).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (1)

F. G. Celii, L. A. Filesses, E. A. Beam, H. Y. Liu, “In situ detection of InGaAs strained layer relaxation by laser light scattering,” J. Vac. Sci. Technol. A 11, 1796–1802 (1993).
[CrossRef]

J. Vac. Sci. Technol. B (2)

F. G. Celii, Y. C. Kad, H. Y. Liu, L. A. Filesses, E. A. Beam, “Laser light scattering detection of InGaAs strained layer relaxation,” J. Vac. Sci. Technol. B 11, 1014–1017 (1993).
[CrossRef]

K. Yang, E. Mirabelli, Z.-C. Wu, L. J. Schowalter, “In situ laser light scattering for monitoring III–V semiconductor film growth by molecular-beam epitaxy,” J. Vac. Sci. Technol. B 11, 1011–1013 (1993).
[CrossRef]

Jpn. J. Appl. Phys. (2)

Y. Matsumoto, H. Watanabe, “Inhomogeneity in semi-insulating GaAs revealed by scanning leakage current measurements,” Jpn. J. Appl. Phys. 21, L515–L517 (1982).
[CrossRef]

Y. Nanishi, S. Ishida, S. Miyazawa, “The influence of dislocation density on the uniformity of electrical properties of Si implanted, semi-insulating LEC-GaAs,” Jpn. J. Appl. Phys. 22, 270–272 (1983).
[CrossRef]

Jpn. J. Appl. Phys. 2, Lett. (2)

T. Matsumura, H. Emori, K. Terashima, T. Fukuda, “Resistivity, Hall mobility and leakage current variations in undoped semi-insulating GaAs crystal grown by LEC method,” Jpn. J. Appl. Phys. 2, Lett. 22, L154–L156 (1983).
[CrossRef]

Y. Nanishi, S. Ishida, T. Honda, eds., “Inhomogeneous GaAs FET threshold voltages related to dislocation distribution,” Jpn. J. Appl. Phys. 2, Lett. 21, L335–L337 (1982).
[CrossRef]

Microelectron. Manufacturing Testing (1)

D. Scannell, D. Smith, “Scribing compound semiconductors: an application primer,” Microelectron. Manufacturing Testing 11, 10–11 (1988).

Opt. Eng. (1)

J. M. Elson, J. M. Bennett, “Vector scattering theory,” Opt. Eng. 18, 116–124 (1979).
[CrossRef]

Other (6)

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989).

J. C. Stover, Optical Scattering: Measurement and Analysis (SPIE Optical Engineering Press, Bellingham, Wash., 1995).
[CrossRef]

D. Oelkrug, J. Haiber, R. Lege, H. Stauch, H.-J. Egelhaaf, “Temporal stability of vapor deposited molecular films as studied by laser light scattering,” in Proceedings of the Seventh International Conference on Organized Molecular Films, Numana (Ancona), Italy, 10–15 September 1995 (CINECA, Bologna, 1996), pp. 173–176.

O. I. Bochkin, Mechanical Processing of Semiconductor Materials (Vysshaya Shkola, Moscow, 1983; in Russian).

“Single-crystalline gallium arsenide wafers,” (Research and Production Association, ELMA, Moscow, 1987).

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. SPIE1530, 71–78 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Ratio G(h) between the first-order diffraction beam intensities for wavelengths of 441.6 and 632.8 nm versus the amplitude h of the sinusoidal relief diffraction grating.

Fig. 2
Fig. 2

Measuring scattered-light-intensity maps. Optical diagram of the ADELAR-6 device for monitoring the surface quality. Abbreviations are defined in text.

Fig. 3
Fig. 3

Optical diagram of the setup for measuring ARS: L 1, He–Ne laser; L 2, He–Cd laser; M 1, M 2, M 3, mirrors; BCh, beam chopper; MOb, microscope objective lens; Ob 1, Ob 2, objective lenses; D 1D 3, diaphragms; PM, photomultiplier; SM 1, SM 2, stepping motors; S, sample.

Fig. 4
Fig. 4

Isophote maps for red light scattering by two GaAs (1 1 1) samples. The isophotes correspond to the log (BRDF) values in the -5 to 0 range, with a spacing of 0.25. The maximum value of 0 is the smallest circle at the center of the pattern. Polar angles are shown on the X and Y axes, and the azimuthal angles, corresponding to the sample orientation, are in the plane of the paper. (a) GaAs sample with δ = 7.4 nm rms; (b) GaAs with δ = 53.8 nm rms, (c) log (∂ BRDF/∂φ) for the GaAs sample in (b).

Fig. 5
Fig. 5

BRDF (10°, 0°) changing during linear scanning over the (1 0 0) surface of a GaAs wafer. A region corresponding to a smooth surface area lies between the arrows.

Fig. 6
Fig. 6

A smooth area of the GaAs (1 0 0) surface. The isophot logarithm maps of BRDF for (a) blue light and (b) red light and (c) their ratio calculated for the spatial frequencies determined by the scattering angle for red light. The log (BRDF) is in the changing -6.5 to 2 (-5 to 0) range with the spacing 0.25: δ = (a) 2.3 and (b) 1.5 nm. The maximum value of 2 (0) is the smallest circle at the center of the pattern.

Fig. 7
Fig. 7

Same as in Fig. 6 but for a rough GaAs (1 0 0) surface area. The log (BRDF) is in the changing -6 to 2 range, with the spacing 0.25. (a) δ = 6.3 nm, (b) δ = 3.8 nm.

Fig. 8
Fig. 8

PSD versus wave-vector curves for the same GaAs (1 0 0) surface as in Fig. 6. (a) Smooth area, averaging over all azimuths; (b) rough area; 0° and 270° directions at the surface plane. In (a) triangles (squares) are experimental data for red (blue) light. Theoretical results are given by exponential, Gaussian, and ABC models.

Fig. 9
Fig. 9

(a) ACF/ACF(0) and (b) ACF of surface scattering for GaAs (1 0 0) surface area, calculated from the PSD data for a smooth (averaged over all azimuths) and a rough (for 0° and 270° directions) surface area.

Fig. 10
Fig. 10

Topographic factor values for a smooth surface area averaged over azimuth, versus wave vector.

Fig. 11
Fig. 11

Scattered-light-intensity distribution over the GaAs (1 0 0) surface obtained with the ADELAR-6 instrument. (The scattered-light-intensity scale is linear, white and light-gray areas have higher scattering levels than the darker areas.) For more details, see text.

Fig. 12
Fig. 12

Microphotograph of the GaAs (1 0 0) surface in the vicinity of an indenter. (The sample orientation is the same as in Figs. 6 and 7.)

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

BRDFθ, φ=1I0 cos θdIsdΩs.
TIS=1R  dIsdΩsdΩs,
OF=ω/c4π2cos2 θ |1-ε|2|1+ε|2|q|2 cos2 φ|q+qε|2+ω/c2 sin2 φ|q+q|2,
Exponential20:  gk=2πδ2σ21+|k|σ23/2,
Gaussian20:  gk=πδ2σ2 exp-(|k|σ/2)2,
ABC model21:  gk=A1+B2π|k|2C/2,
Gh=I1λBLUEI1λRED=RBLUERREDJ12πh cos θiλBLUEJ12πh cos θiλRED2,
Gh=constJ12πhλBLUEJ12πhλRED2.
TFθ, φ=BRDFBLUEθBLUE, φBRDFREDθ, φ, θBLUE=arcsinλBLUEλREDsin θ.

Metrics