Abstract

Concentration measurements of trace gases in the atmosphere require the use of highly sensitive and precise techniques. The UV–visible differential optical absorption spectroscopy technique is one that is heavily used for tropospheric measurements. To assess the advantages and drawbacks of using a Fourier transform spectrometer, we built a differential optical absorption spectroscopy optical setup based on a Bruker IFS 120M spectrometer. The characteristics and the capabilities of this setup have been studied and compared with those of the more conventional grating-based instruments. Two of the main advantages of the Fourier transform spectrometer are (1) the existence of a reproducible and precise wave-number scale, which greatly simplifies the algorithms used to analyze the atmospheric spectra, and (2) the possibility of recording large spectral regions at relatively high resolution, enabling the simultaneous detection of numerous chemical species with better discriminating properties. The main drawback, on the other hand, is due to the fact that a Fourier transform spectrometer is a scanning device for which the scanning time is small compared with the total measurement time. It does not have the signal integration capabilities of the CCD or photodiode array-based grating spectrographs. The Fourier transform spectrometer therefore needs fairly large amounts of light and is limited to short to medium absorption path lengths when working in the UV.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription