Abstract

The volume backscattering coefficients of atmospheric aerosol were measured with a tunable CO2 lidar system at various wavelengths in Utah (a desert environment) along a horizontal path a few meters above the ground. In deducing the aerosol backscattering, a deconvolution (to remove the smearing effect of the long CO2 lidar pulse and the lidar limited bandwidth) and a constrained-slope method were employed. The spectral shape β(λ) was similar for all the 13 measurements during a 3-day period. A mean aerosol backscattering-wavelength dependence β(λ) was computed from the measurements and used to estimate the error Δ(CL) (concentration–path-length product) in differential-absorption lidar measurements for various gases caused by the systematic aerosol differential backscattering and the error that is due to fluctuations in the aerosol backscattering. The water-vapor concentration–path-length product CL and the average concentration C = 〈CL〉/L for a path length L computed from the range-resolved lidar measurements is consistently in good agreement with the water-vapor concentration measured by a meteorological station. However, I was unable to deduce, reliably, the range-resolved water-vapor concentration C(r), which is the derivative of the range-dependent product CL, because of the effect of residual noise caused mainly by errors in the deconvolved lidar measurements.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Byer, M. Garbuny, “Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors,” Appl. Opt. 12, 1496–1505 (1973).
    [CrossRef] [PubMed]
  2. J. C. Petheram, “Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar,” Appl. Opt. 20, 3941–3946 (1981).
    [CrossRef] [PubMed]
  3. W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York1995), pp. 213–305.
  4. A. Ben-David, “Mueller matrix for atmospheric aerosols at CO2 laser wavelengths from backscattering polarized lidar measurements,” J. Geophys. Res. 103, 26,041–26,050 (1999).
    [CrossRef]
  5. R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meterol. Soc. 92, 220–230 (1966).
    [CrossRef]
  6. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels,” Appl. Opt. 19, 2726–2734 (1980).
    [CrossRef] [PubMed]
  7. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
    [CrossRef] [PubMed]
  8. P. V. Cvijin, D. Ignjatijevic, I. Mendez, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effect on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
    [CrossRef]
  9. L. T. Molina, W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for remote sensing,” Appl. Opt. 23, 3893–3900 (1984).
    [CrossRef]
  10. A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
    [CrossRef] [PubMed]
  11. A. Ben-David, “Optimal bandwidth for topographical DIAL detection,” Appl. Opt. 35, 1531–1536 (1996).
    [CrossRef] [PubMed]
  12. A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
    [CrossRef]
  13. R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.
  14. A. Ben-David, “Wavelength dependence of backscattering and extinction of kaolin dust at CO2 wavelength: effect of multiple scattering,” Appl. Opt. 32, 1598–1605 (1993).
    [CrossRef] [PubMed]
  15. A. Ben-David, “Multiple-scattering effects on differential absorption for the transmission of a plane parallel beam in a homogeneous medium,” Appl. Opt. 36, 1386–1398 (1997).
    [CrossRef] [PubMed]
  16. G. K. Yue, G. S. Kent, U. O. Farrukh, A. Deepak, “Modeling atmospheric aerosol backscatter at CO2 laser wavelength. 3. Effect of changes in wavelength and ambient conditions,” Appl. Opt. 22, 1671–1678 (1983).
    [CrossRef]
  17. J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.
  18. W. B. Grant, “Water vapor absorption coefficients in the 8–13-µm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
    [CrossRef] [PubMed]
  19. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
    [CrossRef] [PubMed]
  20. M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
    [CrossRef] [PubMed]
  21. J. Ryan, M. H. Hubert, R. A. Crane, “Water vapor absorption at isotopic CO2 laser wavelength,” Appl. Opt. 22, 711–717 (1983); erratum, 23, 1302–1303 (1984).
  22. R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-µm and 10-µm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
    [CrossRef] [PubMed]
  23. R. R. Patty, G. M. Russwurn, W. A. McClenny, D. R. Morgan, “CO2 laser absorption coefficients for determining ambient level of O3 NH3 and C2H4,” Appl. Opt. 13, 2850–2854 (1974).
    [CrossRef] [PubMed]
  24. A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths: application to the remote sensing of those pollutants,” Appl. Opt. 17, 391–393 (1978); errata, 19, 1572 (1980).
  25. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
    [CrossRef]
  26. U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and pressure dependence of NH3 and C2H4 absorption cross sections at CO2 laser wavelengths,” Appl. Opt. 19, 1711–1716 (1980).
    [CrossRef] [PubMed]
  27. V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).
  28. W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various IR pollutants,” Appl. Opt. 14, 2058–2059 (1975).
    [CrossRef] [PubMed]
  29. A. Ben-David, “Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars,” Appl. Opt. 32, 7479–7483 (1993).
    [CrossRef] [PubMed]
  30. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
    [CrossRef]

1999 (1)

A. Ben-David, “Mueller matrix for atmospheric aerosols at CO2 laser wavelengths from backscattering polarized lidar measurements,” J. Geophys. Res. 103, 26,041–26,050 (1999).
[CrossRef]

1997 (1)

1996 (1)

1993 (2)

1992 (2)

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

1990 (1)

1987 (2)

1984 (1)

1983 (2)

1982 (1)

1981 (2)

J. C. Petheram, “Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar,” Appl. Opt. 20, 3941–3946 (1981).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
[CrossRef]

1980 (2)

1978 (2)

1976 (2)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

1975 (1)

1974 (1)

1973 (1)

1966 (1)

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meterol. Soc. 92, 220–230 (1966).
[CrossRef]

Aref’yev, V. N.

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

Ben-David, A.

A. Ben-David, “Mueller matrix for atmospheric aerosols at CO2 laser wavelengths from backscattering polarized lidar measurements,” J. Geophys. Res. 103, 26,041–26,050 (1999).
[CrossRef]

A. Ben-David, “Multiple-scattering effects on differential absorption for the transmission of a plane parallel beam in a homogeneous medium,” Appl. Opt. 36, 1386–1398 (1997).
[CrossRef] [PubMed]

A. Ben-David, “Optimal bandwidth for topographical DIAL detection,” Appl. Opt. 35, 1531–1536 (1996).
[CrossRef] [PubMed]

A. Ben-David, “Wavelength dependence of backscattering and extinction of kaolin dust at CO2 wavelength: effect of multiple scattering,” Appl. Opt. 32, 1598–1605 (1993).
[CrossRef] [PubMed]

A. Ben-David, “Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars,” Appl. Opt. 32, 7479–7483 (1993).
[CrossRef] [PubMed]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
[CrossRef]

R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.

Brewer, R. J.

Brothers, A. M.

Bruce, C. W.

Bugrim, G. I.

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

Byer, R. L.

Calloway, A. R.

Charpentier, H.

Collis, R. T. H.

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meterol. Soc. 92, 220–230 (1966).
[CrossRef]

Comera, J.

Crane, R. A.

Cvijin, P. V.

D’Amico, F. M.

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.

A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
[CrossRef]

Deepak, A.

DeFeo, W. E.

Emery, S. L.

Eng, S. T.

Farrukh, U. O.

Fischer, G.

Garbuny, M.

Gelbwachs, J. A.

Gotoff, S. W.

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.

A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
[CrossRef]

Grant, W. B.

Hake, R. D.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hawley, J. G.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Hubert, M. H.

Ignjatijevic, D.

Irons, J. R.

J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.

Jaussaud, C.

Johansson, J.

Kent, G. S.

Killinger, D. K.

Loper, G. L.

Margolis, J. S.

Marthinsson, B.

Mayer, A.

McClenny, W. A.

McDougal, D. S.

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
[CrossRef]

Mendez, I.

Menyuk, N.

Menzies, R. T.

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
[CrossRef]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

Molina, L. T.

Morgan, D. R.

Murray, E. R.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Pantani, L.

Patty, R. R.

Persson, U.

Peterson, G. W.

J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.

Petheram, J. C.

Pippi, I.

Rosengren, L.-G.

Russwurn, G. M.

Ryan, J.

Schnell, W.

Shumate, M. S.

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
[CrossRef]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

Sizov, N. I.

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

Sreckovic, M.

Stamps, M. A.

Tratt, D. M.

van der Laan, J. E.

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Vanderbeek, R. G.

A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
[CrossRef]

R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.

Visheratin, K. N.

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

Weismiller, R. A.

J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.

Yue, G. K.

Appl. Opt. (22)

G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon dioxide laser absorption spectra and low ppb photoacoustic detection of hydrazine fuels,” Appl. Opt. 19, 2726–2734 (1980).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser remote sensing of hydrazine, MMH, and UDMH using a differential-absorption CO2 lidar,” Appl. Opt. 21, 2275–2286 (1982).
[CrossRef] [PubMed]

P. V. Cvijin, D. Ignjatijevic, I. Mendez, M. Sreckovic, L. Pantani, I. Pippi, “Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effect on DIAL and geological remote sensing,” Appl. Opt. 26, 4323–4329 (1987).
[CrossRef]

L. T. Molina, W. B. Grant, “FTIR-spectrometer-determined absorption coefficients of seven hydrazine fuel gases: implications for remote sensing,” Appl. Opt. 23, 3893–3900 (1984).
[CrossRef]

A. Ben-David, S. L. Emery, S. W. Gotoff, F. M. D’Amico, “A high PRF, multiple wavelength, pulsed CO2 lidar system for atmospheric transmission and target reflectance measurements,” Appl. Opt. 31, 4224–4232 (1992).
[CrossRef] [PubMed]

A. Ben-David, “Optimal bandwidth for topographical DIAL detection,” Appl. Opt. 35, 1531–1536 (1996).
[CrossRef] [PubMed]

R. L. Byer, M. Garbuny, “Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors,” Appl. Opt. 12, 1496–1505 (1973).
[CrossRef] [PubMed]

J. C. Petheram, “Differential backscatter from the atmospheric aerosol: the implications for IR differential absorption lidar,” Appl. Opt. 20, 3941–3946 (1981).
[CrossRef] [PubMed]

A. Ben-David, “Wavelength dependence of backscattering and extinction of kaolin dust at CO2 wavelength: effect of multiple scattering,” Appl. Opt. 32, 1598–1605 (1993).
[CrossRef] [PubMed]

A. Ben-David, “Multiple-scattering effects on differential absorption for the transmission of a plane parallel beam in a homogeneous medium,” Appl. Opt. 36, 1386–1398 (1997).
[CrossRef] [PubMed]

G. K. Yue, G. S. Kent, U. O. Farrukh, A. Deepak, “Modeling atmospheric aerosol backscatter at CO2 laser wavelength. 3. Effect of changes in wavelength and ambient conditions,” Appl. Opt. 22, 1671–1678 (1983).
[CrossRef]

W. B. Grant, “Water vapor absorption coefficients in the 8–13-µm spectral region: a critical review,” Appl. Opt. 29, 451–462 (1990).
[CrossRef] [PubMed]

W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL measurements of water vapor,” Appl. Opt. 26, 3033–3042 (1987).
[CrossRef] [PubMed]

M. S. Shumate, R. T. Menzies, J. S. Margolis, L.-G. Rosengren, “Water vapor absorption of carbon dioxide laser radiation,” Appl. Opt. 15, 2480–2488 (1976).
[CrossRef] [PubMed]

J. Ryan, M. H. Hubert, R. A. Crane, “Water vapor absorption at isotopic CO2 laser wavelength,” Appl. Opt. 22, 711–717 (1983); erratum, 23, 1302–1303 (1984).

R. J. Brewer, C. W. Bruce, “Photoacoustic spectroscopy of NH3 at the 9-µm and 10-µm 12C16O2 laser wavelengths,” Appl. Opt. 17, 3746–3749 (1978).
[CrossRef] [PubMed]

R. R. Patty, G. M. Russwurn, W. A. McClenny, D. R. Morgan, “CO2 laser absorption coefficients for determining ambient level of O3 NH3 and C2H4,” Appl. Opt. 13, 2850–2854 (1974).
[CrossRef] [PubMed]

A. Mayer, J. Comera, H. Charpentier, C. Jaussaud, “Absorption coefficients of various pollutant gases at CO2 laser wavelengths: application to the remote sensing of those pollutants,” Appl. Opt. 17, 391–393 (1978); errata, 19, 1572 (1980).

M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser absorption spectrometer: remote measurement of tropospheric ozone,” Appl. Opt. 15, 545–552 (1981).
[CrossRef]

U. Persson, B. Marthinsson, J. Johansson, S. T. Eng, “Temperature and pressure dependence of NH3 and C2H4 absorption cross sections at CO2 laser wavelengths,” Appl. Opt. 19, 1711–1716 (1980).
[CrossRef] [PubMed]

W. Schnell, G. Fischer, “Carbon dioxide laser absorption coefficients of various IR pollutants,” Appl. Opt. 14, 2058–2059 (1975).
[CrossRef] [PubMed]

A. Ben-David, “Temperature dependence of water vapor absorption coefficients for CO2 differential absorption lidars,” Appl. Opt. 32, 7479–7483 (1993).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric water vapor measurements with an infrared (10-µm) differential-absorption lidar system,” Appl. Phys. Lett. 28, 542–543 (1976).
[CrossRef]

Izv. Acad. Sci. USSR Atmos. Oceanic Phys. (1)

V. N. Aref’yev, G. I. Bugrim, K. N. Visheratin, N. I. Sizov, “The effects of the parameters of the atmosphere in remote laser gas analysis,” Izv. Acad. Sci. USSR Atmos. Oceanic Phys. 28, 295–300 (1992).

J. Geophys. Res. (1)

A. Ben-David, “Mueller matrix for atmospheric aerosols at CO2 laser wavelengths from backscattering polarized lidar measurements,” J. Geophys. Res. 103, 26,041–26,050 (1999).
[CrossRef]

Q. J. R. Meterol. Soc. (1)

R. T. H. Collis, “Lidar: a new atmospheric probe,” Q. J. R. Meterol. Soc. 92, 220–230 (1966).
[CrossRef]

Other (4)

W. B. Grant, “Lidar for atmospheric and hydrospheric studies,” in Tunable Laser Applications, F. J. Duarte, ed. (Marcel Dekker, New York1995), pp. 213–305.

J. R. Irons, R. A. Weismiller, G. W. Peterson, “Soil reflectance,” in Theory and Applications of Optical Remote Sensing, G. Asrar, ed. (Wiley, New York1989), pp. 66–106.

A. Ben-David, R. G. Vanderbeek, S. W. Gotoff, F. M. D’Amico, “The effect of spectral time lag correlation coefficient and signal averaging on airborne CO2 DIAL measurements,” in Application of Lidar to Current Atmospheric Topics II, A. J. Sedlacek, K. W. Fischer, eds., Proc. SPIE3127, 224–236 (1997).
[CrossRef]

R. G. Vanderbeek, A. Ben-David, F. M. D’Amico, S. W. Gotoff, “Issues effecting the signal-to-noise ratio for airborne CO2 DIAL measurements,” presented at the 19th International Laser Radar Conference, 6–10 July 1998, Annapolis, Md.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Wavelength-dependent atmospheric aerosol backscattering for experiments a1–a3 conducted on 25 June 1995 at Dugway Proving Ground, Utah, along a horizontal path a few meters above the ground. The aerosol backscattering β(λ) was computed from the deconvolved CO2 lidar measurements P(r) by a constrained-slope method. Temperature, relative humidity, and concentrations of water vapor and ozone during the experiments are given in Table 1.

Fig. 2
Fig. 2

Same as Fig. 1 but for experiments b1–b5 on 27 June 1995.

Fig. 3
Fig. 3

Same as Fig. 1 but for experiments c1–c5 on 28 June 1995.

Fig. 4
Fig. 4

Average aerosol backscattering spectral shape β(λ) computed from all the 13 backscattering experiments in Figs. 13. The wavelength-dependent standard deviations in the figure are computed from the 13 experiments, all of which have a similar wavelength-dependent shape. The mean standard deviation is small [〈σβ(λ)/β(λ)〉 = 0.06 ± 0.02] and reflects the high degree of similarity among all the aerosol backscattering spectral shapes shown in Figs. 13.

Fig. 5
Fig. 5

Average atmospheric volume extinction coefficient α for the 13 experiments (Table 1), computed with the constrained-slope method, as a function of wavelength. The standard deviations reflect the differences among the computed volume extinction coefficients of all the 13 experiments. The standard deviation of each α for each of the 13 experiments (not shown) is quite high (approximately 0.1–0.2 km-1). The water-vapor absorption at laser wavelengths 10R20, 9P10, and 9R30 (for which there is additional absorption by ammonia at 9R30) is clearly seen. Most of the contributions to α at all other wavelengths in the measurements are due mainly to water-vapor continuum absorption and absorption owing to atmospheric CO2.

Fig. 6
Fig. 6

Range-corrected deconvolved lidar signal ln[P(r)r 2/A] ≅ ln[η(r)βdr)] - 2αr (assuming a homogeneous atmosphere within the lidar measurements along the horizontal path r) for experiment a2 of 25 June 1995 at two laser lines: 10R18 (H2O off-absorption wavelength) and 10R20 (H2O on-absorption wavelength). For the 30-MHz digitizer used in the lidar system, dr = 5 m. It can be seen that the overlap function η(r) that is due to the central obscuration (7.62-cm diameter) in the coaxial lidar system (beam divergence of ∼3.2 mrad) increases monotonically with r and asymptotically approaches a value of 1 at approximately r = 100 m.

Fig. 7
Fig. 7

Mean concentration C = 〈CL〉/L (in millibars) within a path length L (i.e., a mean C for a path length in the range r = 0 to r = L), and concentration–path-length product CL (in mbar m). At the time the lidar measurements were taken (experiment a2 of 25 June 1995) a meteorological station measured a water-vapor concentration of 9 mbars. The minimum path length L is 100 m to ensure that the overlap function η(r) (Fig. 6) approaches a value of 1.

Tables (3)

Tables Icon

Table 1 Meteorological Station Measurements during the Lidar Experiments Shown in Figs. 13

Tables Icon

Table 2 Molecular Absorption Coefficient k (cm-1 atm-1) for Selected Gases as a Function of the CO2 Laser Lines Used in the Measurements

Tables Icon

Table 3 Calculated Error Δ(CL) in ppbv kma from the Atmospheric Aerosol Backscattering Spectrum (Fig. 4) and Its Fluctuations and for Lidar Random Measurement Fluctuations of (σP) of 2%

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Pr=AηrβrdrT2rr2,
Tr=exp-2 0r αrdr
α=αa+kC,
CL=lnPoff/Pon2kon-koff+lnβon/βoff2kon-koff+αaoff-αaonLkon-koff+i>1kioff-kionCiLkon-koff.
ΔCL=lnβon/βoff2kon-koff
ΔCL=σβonβon2+σβoffβoff21/22kon-koff,
ΔCL=σPonPon2+σPoffPoff21/22kon-koff=σPP21/2kon-koff

Metrics