Abstract

Measurements presented here confirm that a temperature-insensitive point occurs in the backscattered Raman spectrum from liquid water. This result, coupled with existing laboratory measurements of Raman scattering from liquid droplets, indicates that a Raman lidar measurement of cloud liquid water is feasible.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Pruppacher, J. D. Klett, MicroPhysics of Clouds and Precipitation (Kluwer Academic, Dordrecht, The Netherlands, 1997).
  2. G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
    [CrossRef]
  3. S. H. Melfi, K. Evans, J. Li, D. Whiteman, R. Ferrare, G. Schwemmer, “Observation of Raman scattering by cloud droplets in the atmosphere,” Appl. Opt. 36, 3551–3559 (1997).
    [CrossRef] [PubMed]
  4. R. Vehring, G. Schweiger, “Optical determination of the temperature of transparent microparticles,” Appl. Spectrosc. 46, 25–27 (1992).
    [CrossRef]
  5. G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
    [CrossRef]
  6. D. E. Hare, C. M. Sorensen, “Interoscillator coupling effects on the OH stretching band of liquid water,” J. Chem. Phys. 96(1), 13–22 (1991).
    [CrossRef]
  7. G. E. Walrafen, W.-H. Yang, Y. C. Chu, “Raman evidence for the clathratelike structure of highly supercooled water,” in Supercooled Liquids Advances and Novel Applications, ACS Symposium Series 676, J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, eds. (American Chemical Society, Washington, D.C., 1997).
    [CrossRef]
  8. D. N. Whiteman, S. H. Melfi, R. A. Ferrare, “Raman lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere,” Appl. Opt. 31, 3068–3082 (1992).
    [CrossRef] [PubMed]

1997 (1)

1992 (2)

1991 (2)

D. E. Hare, C. M. Sorensen, “Interoscillator coupling effects on the OH stretching band of liquid water,” J. Chem. Phys. 96(1), 13–22 (1991).
[CrossRef]

G. Schweiger, “Raman scattering on microparticles: size dependence,” J. Opt. Soc. Am. B 8, 1770–1778 (1991).
[CrossRef]

1986 (1)

G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[CrossRef]

Chu, Y. C.

G. E. Walrafen, W.-H. Yang, Y. C. Chu, “Raman evidence for the clathratelike structure of highly supercooled water,” in Supercooled Liquids Advances and Novel Applications, ACS Symposium Series 676, J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, eds. (American Chemical Society, Washington, D.C., 1997).
[CrossRef]

Evans, K.

Ferrare, R.

Ferrare, R. A.

Hare, D. E.

D. E. Hare, C. M. Sorensen, “Interoscillator coupling effects on the OH stretching band of liquid water,” J. Chem. Phys. 96(1), 13–22 (1991).
[CrossRef]

Hokmabadi, M. S.

G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[CrossRef]

Klett, J. D.

H. R. Pruppacher, J. D. Klett, MicroPhysics of Clouds and Precipitation (Kluwer Academic, Dordrecht, The Netherlands, 1997).

Li, J.

Melfi, S. H.

Pruppacher, H. R.

H. R. Pruppacher, J. D. Klett, MicroPhysics of Clouds and Precipitation (Kluwer Academic, Dordrecht, The Netherlands, 1997).

Schweiger, G.

Schwemmer, G.

Sorensen, C. M.

D. E. Hare, C. M. Sorensen, “Interoscillator coupling effects on the OH stretching band of liquid water,” J. Chem. Phys. 96(1), 13–22 (1991).
[CrossRef]

Vehring, R.

Walrafen, G. E.

G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[CrossRef]

G. E. Walrafen, W.-H. Yang, Y. C. Chu, “Raman evidence for the clathratelike structure of highly supercooled water,” in Supercooled Liquids Advances and Novel Applications, ACS Symposium Series 676, J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, eds. (American Chemical Society, Washington, D.C., 1997).
[CrossRef]

Whiteman, D.

Whiteman, D. N.

Yang, W. H.

G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[CrossRef]

Yang, W.-H.

G. E. Walrafen, W.-H. Yang, Y. C. Chu, “Raman evidence for the clathratelike structure of highly supercooled water,” in Supercooled Liquids Advances and Novel Applications, ACS Symposium Series 676, J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, eds. (American Chemical Society, Washington, D.C., 1997).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

J. Chem. Phys. (2)

G. E. Walrafen, M. S. Hokmabadi, W. H. Yang, “Raman isosbestic points from liquid water,” J. Chem. Phys. 85(12), 6964–6969 (1986).
[CrossRef]

D. E. Hare, C. M. Sorensen, “Interoscillator coupling effects on the OH stretching band of liquid water,” J. Chem. Phys. 96(1), 13–22 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Other (2)

H. R. Pruppacher, J. D. Klett, MicroPhysics of Clouds and Precipitation (Kluwer Academic, Dordrecht, The Netherlands, 1997).

G. E. Walrafen, W.-H. Yang, Y. C. Chu, “Raman evidence for the clathratelike structure of highly supercooled water,” in Supercooled Liquids Advances and Novel Applications, ACS Symposium Series 676, J. T. Fourkas, D. Kivelson, U. Mohanty, K. A. Nelson, eds. (American Chemical Society, Washington, D.C., 1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Raman-scattering intensity as a function of wave number for a backscattering geometry at five temperatures: 4 °C, 23 °C, 48 °C, 70 °C, and 90 °C. The isosbestic point is at 3425 cm-1 as in the case of scattering at a 90-deg angle.

Metrics