Abstract

Imaging spectrometry enables passive, stand-off detection and analysis of the chemical composition of gas plumes and surfaces over wide geographic areas. We describe the use of a long-wavelength infrared imaging spectroradiometer, comprised of a low-order tunable Fabry–Perot etalon coupled to a HgCdTe detector array, to perform multispectral detection of chemical vapor plumes. The tunable Fabry–Perot etalon used in this research provides coverage of the 9.5–14-µm spectral region with a resolution of 7–9 cm-1. The etalon-based imaging system provides the opportunity to image a scene at only those wavelengths needed for chemical species identification and quantification and thereby minimize the data volume necessary for selective species detection. We present initial results using a brassboard imaging system for stand-off detection and quantification of chemical vapor plumes against near-ambient-temperature backgrounds. These data show detection limits of 22 parts per million by volume times meter (ppmv × m) and 0.6 ppmv × m for dimethyl methyphosphonate and SF6, respectively, for a gas/background ΔT of 6 K. The system noise-equivalent spectral radiance is approximately 2 µW cm-2 sr-1 µm-1. Model calculations are presented comparing the measured sensitivity of the sensor to the anticipated signal levels for two chemical release scenarios.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Walter, D. Flanigan, “Detection of atmospheric pollutants: a correlation technique,” Appl. Opt. 14, 1423–1428 (1975).
    [CrossRef] [PubMed]
  2. M. L. G. Althouse, “Spectral filtering of thermal imagers for gas detection,” in Proceedings of the Third International Symposium on Protection Against Chemical Agents (Umea, Sweden, 1989), pp. 143–148.
  3. L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).
  4. M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
    [CrossRef]
  5. C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995).
    [CrossRef]
  6. C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995).
    [CrossRef]
  7. J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
    [CrossRef]
  8. C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).
  9. C. M. Gittins, W. G. Lawrence, W. J. Marinelli, “Frequency agile bandpass filter for direct detection lidar receivers,” Appl. Opt. 37, 8327–8335 (1998).
    [CrossRef]
  10. P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
    [CrossRef]
  11. D. R. Suhre, E. Villa, “Imaging spectroradiometer for the 8–12-µm region with a 3-cm-1 passband acousto-optic tunable filter,” Appl. Opt. 37, 2340–2345 (1998).
    [CrossRef]
  12. D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of modtran,” Appl. Opt. 35, 6090–6098 (1996).
    [CrossRef] [PubMed]
  13. D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 1985).
  14. L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
    [CrossRef]
  15. P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
    [CrossRef]
  16. J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.
  17. R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.
  18. R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.
  19. R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.
  20. U.S. Department of Energy, Richland Operations website, http://www.hanford.gov/twrs/char.pub/docs/tcr/t107/t107s2.htm .
  21. J. H. Seinfeld, ed. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986).
  22. E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.
  23. Fact sheet, Chemical and Biological Defense Information Center, http://www.cbiac.apgea.army.mil/faq.htm .
  24. J. E. O’Pray, “Regional power ballistic missiles: an emerging threat to deployed US forces?” Analytical study. (Air War College, Air University, Maxwell Air Force Base, Ala., 1990).
  25. R. Lees, A. F. Smith, eds., Design, Construction and Refurbishment of Laboratories (Ellis Horwood Limited, Chichester, England, 1984).
  26. J. D. Barden, R. Kroutil, “Development and preliminary field evaluation of a field-of-view near real-time 3-D stack plume model developed for the measurement attributes of remote optical sensors,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 457–467.
  27. modtran2 (Ontar Corporation, North Andover, Mass., 1992).

1998 (2)

1996 (1)

1994 (1)

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

1991 (1)

M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

1985 (1)

L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
[CrossRef]

1981 (1)

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

1975 (1)

Althouse, M. L.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Althouse, M. L. G.

M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

M. L. G. Althouse, “Spectral filtering of thermal imagers for gas detection,” in Proceedings of the Third International Symposium on Protection Against Chemical Agents (Umea, Sweden, 1989), pp. 143–148.

Atherton, P. D.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Barden, J. D.

J. D. Barden, R. Kroutil, “Development and preliminary field evaluation of a field-of-view near real-time 3-D stack plume model developed for the measurement attributes of remote optical sensors,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 457–467.

Bennett, C. L.

C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995).
[CrossRef]

C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995).
[CrossRef]

Bongiovi, R. P.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Bouck, J. B.

L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
[CrossRef]

Carr, L. G.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Carter, M. R.

C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995).
[CrossRef]

C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995).
[CrossRef]

Chang, C. I.

M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

Cherukuri, A.

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

Clark, R. N.

R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.

Darby, S.

J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.

Demirgian, J.

J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.

Fields, D. J.

C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995).
[CrossRef]

C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995).
[CrossRef]

Flanigan, D.

Flanigan, D. F.

D. F. Flanigan, “Prediction of the limits of detection of hazardous vapors by passive infrared with the use of modtran,” Appl. Opt. 35, 6090–6098 (1996).
[CrossRef] [PubMed]

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 1985).

Fletcher, L.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Gallagher, A.

R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

Gallagher, A. J.

R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.

Gittins, C. M.

C. M. Gittins, W. G. Lawrence, W. J. Marinelli, “Frequency agile bandpass filter for direct detection lidar receivers,” Appl. Opt. 37, 8327–8335 (1998).
[CrossRef]

C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).

Gorelick, N.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

Hackwell, J. A.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Hansel, S. J.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Hayhurst, T. L.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Hicks, T. R.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Hoffland, L. D.

L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
[CrossRef]

Holland, P. L.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Kaiser, R. D.

E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.

Kroutil, R.

J. D. Barden, R. Kroutil, “Development and preliminary field evaluation of a field-of-view near real-time 3-D stack plume model developed for the measurement attributes of remote optical sensors,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 457–467.

Kruse, F. A.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

Lawrence, W. G.

Leonelli, J.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Li, Z.

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

Macha, S.

J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.

Marby, D. J.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Marinelli, W. J.

C. M. Gittins, W. G. Lawrence, W. J. Marinelli, “Frequency agile bandpass filter for direct detection lidar receivers,” Appl. Opt. 37, 8327–8335 (1998).
[CrossRef]

C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).

McPherrin, D.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

Nemtchinov, V.

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

Nielson, N. B.

E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.

O’Pray, J. E.

J. E. O’Pray, “Regional power ballistic missiles: an emerging threat to deployed US forces?” Analytical study. (Air War College, Air University, Maxwell Air Force Base, Ala., 1990).

Piffath, R. J.

L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
[CrossRef]

Ratkowski, A. J.

C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).

Reay, N. K.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Ring, J.

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

Sivjee, M. G.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Skinner, J. W.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Suhre, D. R.

Swayze, G. A.

R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.

R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

Uthe, E. E.

E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.

Varanasi, P.

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

Villa, E.

Walter, H.

Warren, D. W.

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

Appl. Opt. (4)

J. Quant. Spectrosc. Radiat. Transfer (1)

P. Varanasi, Z. Li, V. Nemtchinov, A. Cherukuri, “Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications,” J. Quant. Spectrosc. Radiat. Transfer 52, 323–332 (1994).
[CrossRef]

Opt. Eng. (3)

P. D. Atherton, N. K. Reay, J. Ring, T. R. Hicks, “Tunable Fabry–Perot filters,” Opt. Eng. 20, 806–814 (1981).
[CrossRef]

M. L. G. Althouse, C. I. Chang, “Chemical vapor detection with a multispectral thermal imager,” Opt. Eng. 30, 1725–1733 (1991).
[CrossRef]

L. D. Hoffland, R. J. Piffath, J. B. Bouck, “Spectral signatures of chemical agents and simulants,” Opt. Eng. 24, 982–984 (1985).
[CrossRef]

Other (19)

D. F. Flanigan, “The spectral signatures of chemical agent vapors and aerosols,” (U.S. Army Armament, Munitions and Chemical Command, Aberdeen Proving Ground, Md., 1985).

C. L. Bennett, M. R. Carter, D. J. Fields, “Infrared hyperspectral imaging results from vapor plume experiments,” in Imaging Spectrometry, M. R. Descour, J. M. Mooney, D. L. Perry, L. R. Illing, eds., Proc. SPIE2480, 435–444 (1995).
[CrossRef]

C. L. Bennett, M. R. Carter, D. J. Fields, “Hyperspectral imaging in the infrared using LIFTIRS,” in Infrared Technology XXI, B. F. Andresen, M. S. Scholl, eds., Proc. SPIE2552, 274–283 (1995).
[CrossRef]

J. A. Hackwell, D. W. Warren, R. P. Bongiovi, S. J. Hansel, T. L. Hayhurst, D. J. Marby, M. G. Sivjee, J. W. Skinner, “LWIR/MWIR imaging hyperspectral sensor for airborne and ground-based remote sensing,” in Imaging Spectrometry II, M. R. Descour, J. M. Mooney, eds., Proc. SPIE2819, 102–107 (1996).
[CrossRef]

C. M. Gittins, W. J. Marinelli, A. J. Ratkowski, “AIRIS hyperspectral imaging technology,” , presented at the Sixth Annual AIAA/BMDO Technology Readiness Symposium, San Diego, California, 18–22 August 1997 (American Institute of Aeronautics and Astronautics, New York, 1997).

M. L. G. Althouse, “Spectral filtering of thermal imagers for gas detection,” in Proceedings of the Third International Symposium on Protection Against Chemical Agents (Umea, Sweden, 1989), pp. 143–148.

L. G. Carr, L. Fletcher, P. L. Holland, J. Leonelli, D. McPherrin, M. L. Althouse, “Characterization of filtered FLIR systems designed for chemical vapor detection and mapping,” in Infrared Imaging Systems: Design, Analysis, Modeling, and Testing, G. C. Holst, ed., Proc. SPIE1309, 90–103 (1990).

J. Demirgian, S. Macha, S. Darby, “The challenge: collection of quantitative chemical release data,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 299–306.

R. N. Clark, A. J. Gallagher, G. A. Swayze, “Material absorption band depth mapping of imaging spectrometer data using the complete band shape least-squares algorithm with library reference spectra,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 90-54 (Jet Propulsion Laboratory, Pasadena Calif.1990), pp. 176–186.

R. N. Clark, G. A. Swayze, A. Gallagher, N. Gorelick, F. A. Kruse, “Mapping with imaging spectrometer data using the complete band shape least-squares algorithm simultaneously fit to multiple spectral features from multiple materials,” in Proceedings of the Third Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Pub. 91-28 (Jet Propulsion Laboratory, Pasadena, Calif., 1991), pp. 2–3.

R. N. Clark, G. A. Swayze, A. Gallagher, “Mapping the minerology and lithology of Canyonlands, Utah with imaging spectrometer data and the multiple materials,” in Summaries of the Third Annual JPL Airborne Geoscience Workshop, JPL Pub. 92-14 (Jet Propulsion Laboratory, Pasadena Calif., 1992), Vol. 1, pp. 11–12.

U.S. Department of Energy, Richland Operations website, http://www.hanford.gov/twrs/char.pub/docs/tcr/t107/t107s2.htm .

J. H. Seinfeld, ed. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York, 1986).

E. E. Uthe, N. B. Nielson, R. D. Kaiser, “Airborne LIDAR and radiometric detection and analysis of effluent plumes,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 211–212.

Fact sheet, Chemical and Biological Defense Information Center, http://www.cbiac.apgea.army.mil/faq.htm .

J. E. O’Pray, “Regional power ballistic missiles: an emerging threat to deployed US forces?” Analytical study. (Air War College, Air University, Maxwell Air Force Base, Ala., 1990).

R. Lees, A. F. Smith, eds., Design, Construction and Refurbishment of Laboratories (Ellis Horwood Limited, Chichester, England, 1984).

J. D. Barden, R. Kroutil, “Development and preliminary field evaluation of a field-of-view near real-time 3-D stack plume model developed for the measurement attributes of remote optical sensors,” in Proceedings of the Third Workshop on Stand-Off Detection for Chemical and Biological Defense (Science and Technology Corp., Hampton, Va., 1994), pp. 457–467.

modtran2 (Ontar Corporation, North Andover, Mass., 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Basic configuration for the tunable Fabry–Perot (F–P) etalon-based imaging spectroradiometer.

Fig. 2
Fig. 2

LWIR imager optical configuration employing the off-axis parabolic (OAP) reflectors as focusing elements.

Fig. 3
Fig. 3

Expanded view of LWIR tunable filter transmission spectrum.

Fig. 4
Fig. 4

Representative transmission spectrum of the LWIR tunable filter module.

Fig. 5
Fig. 5

Schematic diagram of the three-layer model for quantitative analysis of scene radiance levels and plume concentration determination.

Fig. 6
Fig. 6

Observed and calculated transmission through an absorption cell containing 7 ppmv × m SF6 and 76 ppmv × m DMMP in dry N2. The reference blackbody is at 308 K and the gas temperature is 298 K. The data represent a six-scan coaverage.

Fig. 7
Fig. 7

Two-band correlation plot of narrow-band scene images at 10.55 and 10.85 µm. See text for details.

Fig. 8
Fig. 8

IR image of absorption cell at 10.55 µm with the location of SF6 absorption identified by two-band correlation analysis highlighted in black.

Fig. 9
Fig. 9

Calculated SF6 column density in the absorption cell containing scene as determined using the three-layer radiative transfer model.

Fig. 10
Fig. 10

Best-fit LWIR imager data to Eq. (5) for a 141 ppmv × m DMMP plume release.

Fig. 11
Fig. 11

Measured versus calculated DMMP plume column densities.

Fig. 12
Fig. 12

Visible image of the outdoor plume imaging configuration. Gas is released from the black pipe slightly below the center of the scene.

Fig. 13
Fig. 13

SF6 plume from outdoor release experiment as identified using the SMF algorithm. Light pixels indicate a high degree of correlation with the SF6 absorption spectrum.

Fig. 14
Fig. 14

SF6 column density in the outdoor plume release calculated using LWIR imager data and the three-layer radiative transfer model.

Fig. 15
Fig. 15

Calculated column density (concentration × path length) for stack emission over the FOV of the system.

Fig. 16
Fig. 16

Estimated differential radiance for chemical species in the stack plume for a noncombustion case.

Fig. 17
Fig. 17

Column density of agent for a simulated release from a SCUD-B.

Fig. 18
Fig. 18

Total radiance at 9.4 µm for a simulated chemical agent release using DMMP.

Fig. 19
Fig. 19

Net radiance at 9.4 µm for a simulated chemical agent release. Flattening of the profile at the highest radiance levels indicates that the cloud is optically thick in the center.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

2l cos θ=m+λπ λ,
IλI0λ=Tλ21-Rλ2×1+2Fλπ2 sin22πl cos θλ-λ-1,
ΔλFSR=λm-λm+1,
ΔλFSR=λmaxm+1,
ΔNλ=tplume Nλ, Tbb+1-tplume×Nλ, Tplume-Nλ, Tchopper,
tplumeλ=exp- kiλCil,
dΔNdρ=kλNλ, Tplume-Nλ, Tbb,
δρδΔNkλNTTplume-Tbb.
cx, y, z=qπuσyσzexp-y22σy2exp-z-h22σz2+exp-z+h22σz2,
cx, y, z=S2π3/2σxσyσzexp-x-x-ut-t22σx2-y-y22σy2exp-z-z22σz2+exp-z+z22σz2,
σy=Ryxry,
σz=Rzxrz,

Metrics