Abstract

We made a liquid-crystal (LC) luminaire for the first time to our knowledge by combining a metal halide lamp and an optical shutter composed of a compound of a very high nematic-isotropic point (172 °C) LC and a polymer (CLCP). The shutter can modulate high-power light independently of the state of polarization because the CLCP film becomes transparent or opalescent when either sufficiently high or no voltage is applied to it. To solve the problem, which is peculiar to CLCP films, that the color temperature of light modulated by the film changes with the film’s transmittance, a pulse-width modulation method that varies the time ratio of the on and off states of the shutter was developed. The performance characteristics of the luminaire were as follows: illuminance range, 192 to 10,400 lx at a distance of 5 m from the luminaire; rise and decay times, 1.4 and 1.5 ms; color temperature, 4060–5600 K; operation room temperature, ∼150 °C; stable operation time, more than 2000 h. Experimental results show the feasibility of applications of this luminaire in various fields, including television, movie, and stage lighting.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).
  2. T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
    [CrossRef]
  3. T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.
  4. G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series 577-606 (SPIE Press, Bellingham, Wash., 1990).
  5. K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
    [CrossRef]
  6. K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
    [CrossRef] [PubMed]
  7. K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
    [CrossRef]
  8. W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
    [CrossRef]
  9. J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
    [CrossRef]
  10. P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. 261, 383–392 (1995).
    [CrossRef]
  11. S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
    [CrossRef]
  12. S. T. Wu, A. M. Lackner, U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26, 3441–3445 (1987).
    [CrossRef] [PubMed]
  13. H. P. Schad, H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid crystals,” Phys. Rev. A 26, 2940–2945 (1982).
    [CrossRef]
  14. S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1988).
    [CrossRef]
  15. B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
    [CrossRef]
  16. G. P. Montgomery, “Angle-dependent scattering of polarized light by polymer-dispersed liquid-crystal films,” J. Opt. Soc. Am. B 5, 774–784 (1988).
    [CrossRef]
  17. F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
    [CrossRef]

1997 (2)

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
[CrossRef]

1996 (3)

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

1995 (1)

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. 261, 383–392 (1995).
[CrossRef]

1993 (2)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

1992 (1)

J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
[CrossRef]

1989 (1)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

1988 (2)

G. P. Montgomery, “Angle-dependent scattering of polarized light by polymer-dispersed liquid-crystal films,” J. Opt. Soc. Am. B 5, 774–784 (1988).
[CrossRef]

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1988).
[CrossRef]

1987 (2)

B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

S. T. Wu, A. M. Lackner, U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26, 3441–3445 (1987).
[CrossRef] [PubMed]

1982 (1)

H. P. Schad, H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid crystals,” Phys. Rev. A 26, 2940–2945 (1982).
[CrossRef]

Amundson, K.

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

Bai, R. K.

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

Bloisi, F.

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Cheng, S. X.

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

Doane, J. W.

B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Drzaic, P. S.

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. 261, 383–392 (1995).
[CrossRef]

Efron, U.

Everaers, R.

W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
[CrossRef]

Fujii, T.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Fujikake, H.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Fujisawa, T.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Hirabayashi, T.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Hirakata, K.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Kajiyama, T.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Kashiwagi, T.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Kawakita, M.

Kelly, J.

J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
[CrossRef]

Kikuchi, H.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Kishi, K.

Lackner, A. M.

Maruyama, K.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Miyamoto, A.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Montgomery, G. P.

G. P. Montgomery, “Angle-dependent scattering of polarized light by polymer-dispersed liquid-crystal films,” J. Opt. Soc. Am. B 5, 774–784 (1988).
[CrossRef]

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series 577-606 (SPIE Press, Bellingham, Wash., 1990).

Morimura, Y.

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

Muhoray, P. P.

J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
[CrossRef]

Murata, A.

Namikawa, Y.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Ogawa, H.

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

Pan, C. Y.

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

Ruocchio, C.

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Schad, H. P.

H. P. Schad, H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid crystals,” Phys. Rev. A 26, 2940–2945 (1982).
[CrossRef]

Seifert, U.

W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
[CrossRef]

Tada, K.

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Takano, S.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Takata, K.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Takizawa, K.

K. Takizawa, T. Fujii, M. Kawakita, H. Kikuchi, H. Fujikake, M. Yokozawa, A. Murata, K. Kishi, “Spatial light modulators for projection displays,” Appl. Opt. 36, 5732–5747 (1997).
[CrossRef] [PubMed]

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Tanaka, Y.

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

Terrecuso, P.

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

Vicari, L.

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

West, J. L.

B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Wintz, W.

W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
[CrossRef]

Wu, B. G.

B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

Wu, S. T.

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1988).
[CrossRef]

S. T. Wu, A. M. Lackner, U. Efron, “Optimal operation temperature of liquid crystal modulators,” Appl. Opt. 26, 3441–3445 (1987).
[CrossRef] [PubMed]

Wu, W.

J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
[CrossRef]

Yokozawa, M.

Zeller, H. R.

H. P. Schad, H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid crystals,” Phys. Rev. A 26, 2940–2945 (1982).
[CrossRef]

Zou, Y. F.

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

Appl. Opt. (2)

Chem. Lett. (1)

T. Kajiyama, A. Miyamoto, H. Kikuchi, Y. Morimura, “Aggregation states and electro-optical properties based on light scattering of polymer/liquid crystal composite films,” Chem. Lett. 1989, 813–816 (1989).
[CrossRef]

J. Appl. Phys. (3)

S. X. Cheng, R. K. Bai, Y. F. Zou, C. Y. Pan, “Electro-optical properties of polymer dispersed liquid crystal materials,” J. Appl. Phys. 80, 1991–1995 (1996).
[CrossRef]

S. T. Wu, “Absorption measurements of liquid crystals in the ultraviolet, visible, and infrared,” J. Appl. Phys. 84, 4462–4465 (1988).
[CrossRef]

B. G. Wu, J. L. West, J. W. Doane, “Angular discrimination of light transmission through polymer-dispersed liquid-crystal films,” J. Appl. Phys. 62, 3925–3931 (1987).
[CrossRef]

J. Inst. Televis. Eng. (1)

H. Fujikake, K. Takizawa, T. Fujii, T. Hirabayashi, K. Hirakata, Y. Tanaka, K. Takata, S. Takano, T. Kashiwagi, “Novel luminaire using a liquid crystal light shutter,” J. Inst. Televis. Eng. 47, 1529–1536 (1993; in Japanese).

J. Opt. Soc. Am. B (1)

J. Phys. I (France) (1)

W. Wintz, R. Everaers, U. Seifert, “Mesh collapse in two-dimensional elastic networks under compression,” J. Phys. I (France) 7, 1097–1111 (1997).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

J. Kelly, W. Wu, P. P. Muhoray, “Wavelength dependence of scattering in PDLC films: droplet size effects,” Mol. Cryst. Liq. Cryst. 223, 251–261 (1992).
[CrossRef]

P. S. Drzaic, “Droplet density, droplet size, and wavelength effects in PDLC light scattering,” Mol. Cryst. Liq. Cryst. 261, 383–392 (1995).
[CrossRef]

Opt. Eng. (1)

K. Takizawa, H. Kikuchi, H. Fujikake, Y. Namikawa, K. Tada, “Polymer-dispersed liquid crystal light valves for projection display,” Opt. Eng. 32, 1781–1791 (1993).
[CrossRef]

Phys. Rev. A (1)

H. P. Schad, H. R. Zeller, “Universal law for the rotational viscosity of nematic liquid crystals,” Phys. Rev. A 26, 2940–2945 (1982).
[CrossRef]

Phys. Rev. E (2)

F. Bloisi, C. Ruocchio, P. Terrecuso, L. Vicari, “Angular dependence of light transmittance in polymer dispersed liquid crystal,” Phys. Rev. E 54, 5242–5248 (1996).
[CrossRef]

K. Amundson, “Electro-optic properties of a polymer-dispersed liquid-crystal film: temperature dependence and phase behavior,” Phys. Rev. E 53, 2412–2422 (1996).
[CrossRef]

Other (2)

T. Fujisawa, H. Ogawa, K. Maruyama, “Electro-optic properties and multiplexibility for polymer network liquid crystal display (PN-LCD),” in Digest of the Ninth International Display Research Conference (Institute of Television Engineers of Japan, Kyoto, Japan, 1989), pp. 690–693.

G. P. Montgomery, “Polymer-dispersed and encapsulated liquid crystal films,” in Large-Area Chromogenics: Materials and Devices for Transmittance Control, C. G. Granqvist, C. M. Lampert, eds., Vol. IS04 of SPIE Institute Series 577-606 (SPIE Press, Bellingham, Wash., 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Scanning-electron microscope photograph of the cross section of the CLCP film.

Fig. 2
Fig. 2

Schematic diagram of the schlieren optical system for measurement of the electro-optical properties of the CLCP film: ITO, indium tin oxide.

Fig. 3
Fig. 3

Dependence of the transmittance of the CLCP film on applied voltage for various values of wavelength λ. The transmittance is normalized by the transmittance of the glass cell with no CLCP film.

Fig. 4
Fig. 4

Dependence of the transmittance of the CLCP film on wavelength for various values of applied voltage.

Fig. 5
Fig. 5

Dependence of the transmittance of the CLCP film on the substrate temperature for on and off states.

Fig. 6
Fig. 6

Dependence of rise time τON and decay time τOFF of the CLCP film on the substrate temperature.

Fig. 7
Fig. 7

Schematic diagram of the small luminaire using the CLCP light shutter and a tungsten lamp of 300 W. The intensity and the color temperature of modulated light were measured by an illuminometer or a photoelectric colorimeter 1 m from the luminaire.

Fig. 8
Fig. 8

Dependence on applied voltage of the color temperature and the illuminance of the CLCP film driven with the amplitude modulation method.

Fig. 9
Fig. 9

Schematic diagrams of cross sections of the CLCP film. (a) The film is opalescent in the off state, where white light including all visible rays is scattered. (b) Application of a threshold voltage to the transparent electrodes arranges LC molecules apart from the surface of the polymer wall and shifts the CLCP film to the selective light-scattering mode. (c) A sufficient applied voltage arranges all LC molecules except those placed adjacent to the polymer wall, and the film becomes transparent.

Fig. 10
Fig. 10

Dependence on time share D of the average color temperature and the average illuminance of the LC luminaire, driven by a bipolar pulse voltage as shown in the inset.

Fig. 11
Fig. 11

Experimental results showing the relationship between average transmittance of the CLCP film driven with the PWM and wavelength for various values of D.

Fig. 12
Fig. 12

Large LC luminaire consisting of a 1.2-kW metal-halide lamp and an optical LC shutter.

Fig. 13
Fig. 13

Experimental results showing the dependence on the pulse width of the on state T ON of the illuminance and the color temperature of light projected onto the optical axis 5 m from the LC luminaire driven with the PWM.

Fig. 14
Fig. 14

Experimental results for angular distribution of the light energy of the large LC luminaire. The three upper and three lower curves are the on and the off states, respectively. Each curve (solid, dotted, and dashed) is the measured energy distribution curve of the projected light with a different distribution angle (ϕ = 5.7°, 22.6° and 40.6°).

Fig. 15
Fig. 15

Relationship between normalized illuminance produced by the large LC luminaire and its running time. V 1 is the amplitude of the bipolar pulse voltage applied to the CLCP film.

Fig. 16
Fig. 16

Dependence of the radiation energy density U(λ) of the blackbody on wavelength λ of light. Solid curves are calculated by use of Plank’s law. Circles are obtained by substitution of radiation energies at the values of C T (ON) and C T (OFF) shown and D = 0.5 into Eq. (2).

Tables (1)

Tables Icon

Table 1 Typical properties of the Nematic LC and the Acrylic Copolymer for CLCP

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

D=TON/TON+TOFF.
LD=DLON+1-DLOFF,
CDDCTON+1-DCTOFF.
Uλdλ=8πh/exphc/kλCT-1dλ,

Metrics