Abstract

Greater than 6-µm-oscillation was demonstrated by means of optical parametric oscillation with periodically poled LiNbO3 (PPLN). The interaction length and thickness were 40 mm and 500 µm. The pump source used was a Q-switched Nd:YAG laser with a pulse duration of 120 ns and a repetition rate of 1 kHz. The tuning ranges of the idler waves were 6.57–6.56, 6.22–6.12, and 6.06–5.94 µm for PPLN wafers of 20-, 21.3-, and 22-µm periods, respectively.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ito, “Nonlinear optics using periodic domain inverted structures,” Nonlinear Opt. 7, 327–331 (1994).
  2. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
    [CrossRef]
  3. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  4. M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.
  5. L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
    [CrossRef]
  6. L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
    [CrossRef]
  7. K. C. Burr, C. L. Tang, M. K. Arbore, M. M. Fejer, “Broadly tunable mid-infrared femtosecond optical parametric oscillator using all-solid-state-pumped periodically poled lithium niobate,” Opt. Lett. 22, 1458–1460 (1997).
    [CrossRef]
  8. D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
    [CrossRef]
  9. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
    [CrossRef]
  10. R. L. Byer, Nonlinear Optics, P. G. Harper, B. S. Wherrett, eds. (Academic, New York, 1977), p. 47.
  11. S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
    [CrossRef]
  12. R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
    [CrossRef]

1998 (2)

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

1997 (2)

1996 (1)

1995 (1)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

1994 (1)

H. Ito, “Nonlinear optics using periodic domain inverted structures,” Nonlinear Opt. 7, 327–331 (1994).

1979 (1)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

1971 (1)

R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

1969 (1)

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Arbore, M. K.

Bosenberg, W. R.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

Bridenbaugh, P. M.

R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Brosnan, S. J.

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

Burr, K. C.

Butterworth, S. D.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Byer, R. L.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

R. L. Byer, Nonlinear Optics, P. G. Harper, B. S. Wherrett, eds. (Academic, New York, 1977), p. 47.

Eckardt, R. C.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

Fejer, M. M.

Hanna, D. C.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

Ito, H.

H. Ito, “Nonlinear optics using periodic domain inverted structures,” Nonlinear Opt. 7, 327–331 (1994).

M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.

Izumi, S.

M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.

Jundt, D. H.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553–1555 (1997).
[CrossRef]

Kim, Y. S.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Lefort, L.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Miller, R. C.

R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Myers, L. E.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

Nordland, W. A.

R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Pierce, J. W.

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

Puech, K.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

Ross, G. W.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Sato, M.

M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.

Smith, P. G. R.

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Smith, R. T.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Svirko, Y. P.

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

Tang, C. L.

Taniuchi, T.

M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.

Appl. Phys. Lett. (1)

L. Lefort, K. Puech, G. W. Ross, Y. P. Svirko, D. C. Hanna, “Optical parametric oscillation out to 6.3 µm in periodically poled lithium niobate under strong idler absorption,” Appl. Phys. Lett. 73, 1610–1612 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Brosnan, R. L. Byer, “Optical parametric oscillator threshold and linewidth studies,” IEEE J. Quantum Electron. QE-15, 415–431 (1979).
[CrossRef]

J. Appl. Phys. (2)

R. C. Miller, W. A. Nordland, P. M. Bridenbaugh, “Dependence of second harmonic generation coefficients of LiNbO3 on melt composition,” J. Appl. Phys. 42, 4145–4147 (1971).
[CrossRef]

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

J. Opt. Soc. Am. B. (1)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B. 12, 2102–2116 (1995).
[CrossRef]

Nonlinear Opt. (1)

H. Ito, “Nonlinear optics using periodic domain inverted structures,” Nonlinear Opt. 7, 327–331 (1994).

Opt. Commun. (1)

L. Lefort, K. Puech, S. D. Butterworth, G. W. Ross, P. G. R. Smith, D. C. Hanna, D. H. Jundt, “Efficient, low-threshold synchronously-pumped parametric oscillation in periodically-poled lithium niobate over the 1.3 µm to 5.3 µm range,” Opt. Commun. 152, 55–58 (1998).
[CrossRef]

Opt. Lett. (3)

Other (2)

R. L. Byer, Nonlinear Optics, P. G. Harper, B. S. Wherrett, eds. (Academic, New York, 1977), p. 47.

M. Sato, S. Izumi, T. Taniuchi, H. Ito, “Highly efficient optical parametric operation using periodically poled LiNbO3,” Technical Digest of the International Workshop on Current Topics of Laser Technology, (Communications Research Laboratory, Ministry of Posts and Telecommunications, Kobe, Japan, 1998), paper P-04.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength dependences of attenuation coefficients in the mid-IR region. These were measured for extraordinary polarization with three x-cut LiNbO3 wafers from Japanese and U.S. manufacturers. Even though the thicknesses of wafers 1, 2, and 3 are 0.5, 0.75, and 1 mm, respectively, the three curves show no distinct differences.

Fig. 2
Fig. 2

Temperature tuning curves for 1.064-µm pumped OPO in bulk PPLN with 20-, 21.3-, and 22-µm periods Λ. The calculated curves are based on the Sellmeier coefficients and include thermal expansion. For PPLN of 20-, 21.3-, and 22-µm periods, idler tuning ranges of 6.57–6.56, 6.22–6.12, and 6.06–5.94 µm, respectively, were achieved by temperature control.

Fig. 3
Fig. 3

Signal and idler powers as a function of pump power at a signal wavelength of 1.295 µm. The oscillation threshold is 750 mW with a 120-ns pulse and a 1-kHz repetition rate. The slope efficiency is 0.04% for the signal wave.

Fig. 4
Fig. 4

Pump power dependence of the signal linewidth at a signal wavelength of 1.295 µm. Linewidths of the idler were calculated from those of the signal on the basis of energy conservation.

Fig. 5
Fig. 5

Attenuation coefficient dependence of the threshold energy density for a singly resonant oscillator. Mode coupling coefficients γ are 0.6, 0.7, and 0.8 for signal wave spot sizes of 122, 100, and 75 µm, respectively; pump wave spot size, 150 µm; couplers reflectance, 0.99; cavity length, 51 mm; crystal length, 40 mm; PPLN duty ratio, 0.5; pulse duration (FWHM), 120 ns.

Metrics