Abstract

We demonstrate an eye-safe KTP-based optical parametric oscillator (OPO) driven intracavity by a diode-pumped 1064-nm Nd:YAG laser, passively Q-switched by a Cr4+:YAG crystal. The characteristics of this system, which operates at 1570 nm with a repetition rate as high as 50 Hz, are studied as a function of Cr4+:YAG optical density. Under optimum conditions the OPO generates 1.5-mJ, 3.4 ± 0.1-ns pulses in a single transverse mode. For a Cr4+:YAG Q-switch element with an optical density of 0.5 the conversion efficiency of the intracavity energy is ∼45% with the ratio of OPO to Nd:YAG peak-pulse intensity exceeding unity. These and other OPO characteristics compare favorably with a simple rate equation model of the OPO dynamics.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, Advanced Solid State Lasers, W. R. Bosenberg, M. M. Feyer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).
  2. M. K. Oshman, S. E. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
    [CrossRef]
  3. J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
    [CrossRef]
  4. L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).
  5. R. Lavi, A. Englander, R. Lallouz, “Highly efficient low-threshold tunable all-solid-state intracavity optical parametric oscillator in the mid infrared,” Opt. Lett. 21, 800–802 (1996).
    [CrossRef] [PubMed]
  6. A. R. Geiger, H. Hemmati, W. H. Farr, N. S. Prasad, “Diode-pumped optical parametric oscillator,” Opt. Lett. 21, 201–203 (1996).
    [CrossRef] [PubMed]
  7. P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.
  8. Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
    [CrossRef]
  9. T. Debuisschert, J. Raffy, J.-P. Pocholle, M. Papuchon, “Intracavity optical parametric oscillator: study of the dynamics in pulsed regime,” J. Opt. Soc. Am. B 13, 1569–1587 (1996).
    [CrossRef]
  10. This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).
  11. W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), p. 48.
  12. Union Carbide Corporation Data Notes (Union Carbide Corporation, Danbury, Conn., 1996).
  13. Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
    [CrossRef]
  14. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), p. 534.

1996

1995

Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

1994

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

1971

J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
[CrossRef]

1968

M. K. Oshman, S. E. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Amman, E. O.

J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
[CrossRef]

Baranga, A. Ben-Amar

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Burnham, R.

L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).

Burshtein, Z.

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Chicklis, E.

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

Debuisschert, T.

Englander, A.

Falk, J.

J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
[CrossRef]

Farr, W. H.

Flood, C. J.

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

Gagnon, M.

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

Geiger, A. R.

Greiner, U. J.

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

Harris, S. E.

M. K. Oshman, S. E. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Hays, A. D.

L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).

Hemmati, H.

Kalisky, Y.

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Kasinski, J.

L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).

Ketteridge, P.

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

Klingenberg, H. H.

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

Koechner, W.

W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), p. 48.

Lallouz, R.

Lavi, R.

Lee, I.

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

Marshall, L. R.

L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).

Oshman, M. K.

M. K. Oshman, S. E. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

Papuchon, M.

Pocholle, J.-P.

Prasad, N. S.

Radcliff, W.

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

Raffy, J.

Shimony, Y.

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

Stauss, M.

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

van Driel, H. M.

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

Walker, D. R.

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

Yarborough, J. M.

J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), p. 534.

Appl. Phys. B

This laser is similar to a system described by U. J. Greiner, H. H. Klingenberg, D. R. Walker, C. J. Flood, H. M. van Driel, “Diode pumped Nd:YAG laser using reflective pump optics,” Appl. Phys. B 58, 393–395 (1994).

IEEE J. Quantum Electron.

Y. Shimony, Z. Burshtein, Y. Kalisky, “Cr4+:YAG as passive Q-switch and Brewster plate in a pulsed Nd:YAG laser,” IEEE J. Quantum Electron. 31, 1738–1741 (1995).
[CrossRef]

M. K. Oshman, S. E. Harris, “Theory of optical parametric oscillation internal to the laser cavity,” IEEE J. Quantum Electron. QE-4, 491–502 (1968).
[CrossRef]

J. Falk, J. M. Yarborough, E. O. Amman, “Internal optical parametric oscillation,” IEEE J. Quantum Electron. QE-7, 359–369 (1971).
[CrossRef]

Y. Shimony, Z. Burshtein, A. Ben-Amar Baranga, Y. Kalisky, M. Stauss, “Repetitive Q switching of a CW Nd:YAG laser using Cr4+:YAG saturable absorbers,” IEEE J. Quantum Electron. 32, 305–310 (1996).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Other

P. Ketteridge, I. Lee, M. Gagnon, W. Radcliff, E. Chicklis, “Miniature eyesafe range finder,” in Conference on Lasers and Electro-Optics, Vol. 15 of 1995 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1995), p. 257.

L. R. Marshall, A. D. Hays, J. Kasinski, R. Burnham, “Highly efficient optical parametric oscillators,” in Eye-Safe Lasers: Components, Systems, and Applications, A. M. Johnson, ed., Proc. SPIE1419, 141–152 (1991).

W. Koechner, Solid State Laser Engineering, 2nd ed. (Springer-Verlag, New York, 1988), p. 48.

Union Carbide Corporation Data Notes (Union Carbide Corporation, Danbury, Conn., 1996).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, New York, 1989), p. 534.

See, for example, Advanced Solid State Lasers, W. R. Bosenberg, M. M. Feyer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Intracavity OPO configuration: M1, flat output coupler for [0.75 < R S < 0.95 at λ S = 1570 nm, HR (high reflectivity) at 1064 nm]; M2, black mirror of OPO cavity (HR at 1570 nm, high transmissivity at 1064 nm); M3, spherical back mirror of pump laser cavity (HR at 1064 nm).

Fig. 2
Fig. 2

Dependence of time shift Δ i of nanosecond pulses (i = 1,2, …) generated in a passively Q-switched laser cavity on diode pulse energy E D : Q-switch element optical density, OD = 0.2.

Fig. 3
Fig. 3

Oscilloscope traces of diode pulse power and nanosecond pulses at a diode pulse pump of energy of 112 mJ and a Q switch of OD = 0.2.

Fig. 4
Fig. 4

Signal-pulse energy versus diode-pulse energy for a Q-switch optical density of OD = 0.2.

Fig. 5
Fig. 5

Average energy of a single signal pulse generated with different passive Q-switching elements (OD = 0.2, 0.3, 0.5) versus transparency (=10-OD).

Fig. 6
Fig. 6

Dependence of the output energy of the Nd3+:YAG laser (open circles) and OPO signal (solid circles) on the reflectivity of the output coupling mirror.

Fig. 7
Fig. 7

Temporal shape of pulses generated in OD = 0.5 case: 1, output OPO signal pulse generated with optimal output coupling for 1570 nm; 2, output laser pulse generated with optimal output coupling for 1064 nm; 3, intracavity laser pulse during OPO optimal operation. (For intracavity power of pulses 1 and 3 use the right-hand scale.)

Fig. 8
Fig. 8

Spatial profile of output signal beam: x, transverse coordinate; circles, experimental points; curve, best Gaussian fit.

Fig. 9
Fig. 9

Time-dependent pump intensity I P (solid circles) and OPO signal intensity I S (open circles) obtained with a saturable absorber with α = 7. Time is measured from the turn-on of the diode laser pump.

Fig. 10
Fig. 10

Time-dependent signal pulses for a given α. At t = 0 the pump intensity is I P = 1 (the threshold of OPO).

Fig. 11
Fig. 11

Peak intensity I p , pulse energy E s , and pulse width Δ s of signal pulses versus saturable-absorber density parameter α.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τpdIPdt=NIP+ε-IP1+αNC+fIS,
τsdISdt=IPIS+ε-IS,
τNdNdt=σ-N1+xIP,
τNCdNCdt=1-NC1+βIP,

Metrics