Abstract

We have developed a technique for laser tuning at rates of 100 kHz or more using a pair of acousto-optic modulators. In addition to all-electronic wavelength control, the same modulators also can provide electronically variable Q-switching, cavity length and power stabilization, chirp and linewidth control, and variable output coupling, all at rates far beyond what is possible with conventional mechanically tuned components. Tuning rates of 70 kHz have been demonstrated on a radio-frequency-pumped CO2 laser, with random access to over 50 laser lines spanning a 17% range in wavelength and with wavelength discrimination better than 1 part in 1000. A compact tuner and Q-switch has been deployed in a 5–10-kHz pulsed lidar system. The modulators each operate at a fixed Bragg angle, with the acoustic frequency determining the selected wavelength. This arrangement doubles the wavelength resolution without introducing an undesirable frequency shift.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
    [CrossRef]
  2. A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
    [CrossRef]
  3. F. R. Faxvog, H. W. Mocker, “Rapidly tunable CO2 TEA laser,” Appl. Opt. 21, 3986–3987 (1982).
    [CrossRef] [PubMed]
  4. J. E. Eberhardt, J. G. Haub, L. B. Whitbourn, “Carbon dioxide laser tuning through 110 lines in 3 ms for airborne remote sensing,” Appl. Opt. 27, 879–884 (1988).
    [CrossRef] [PubMed]
  5. A. P. Goutzoulis, D. R. Pape, eds., Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994).
  6. W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967).
    [CrossRef]
  7. R. V. Johnson, “Design of Acousto-Optic Modulators,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), Chap. 3, pp. 123–193.
  8. D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
    [CrossRef]
  9. L. D. Hutcheson, R. S. Hughes, “Rapid acousto-optic tuning of a dye laser,” Appl. Opt. 13, 1395–1398 (1974).
    [CrossRef] [PubMed]
  10. W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970).
    [CrossRef]
  11. G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
    [CrossRef]
  12. L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
    [CrossRef]
  13. K. Doughty, K. Cameron, “Electron tuning of LEC lasers,” in Optical Technology for Microwave Applications II and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 136–142 (1992).
    [CrossRef]
  14. G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).
  15. D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering transducers,” IEEE Trans. Sonics Ultrason. SU-18, 209–214 (1971).
    [CrossRef]
  16. R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970).
    [CrossRef]
  17. M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
    [CrossRef]
  18. F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
    [CrossRef]
  19. F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
    [CrossRef]
  20. P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
    [CrossRef]
  21. S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
    [CrossRef]
  22. K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
    [CrossRef]

1998

K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
[CrossRef]

1993

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

1991

P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

1988

M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
[CrossRef]

F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
[CrossRef]

F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
[CrossRef]

J. E. Eberhardt, J. G. Haub, L. B. Whitbourn, “Carbon dioxide laser tuning through 110 lines in 3 ms for airborne remote sensing,” Appl. Opt. 27, 879–884 (1988).
[CrossRef] [PubMed]

G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

1985

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

1982

1974

1971

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering transducers,” IEEE Trans. Sonics Ultrason. SU-18, 209–214 (1971).
[CrossRef]

1970

R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970).
[CrossRef]

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).

W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970).
[CrossRef]

1967

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967).
[CrossRef]

Abrams, R. L.

R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970).
[CrossRef]

Aiken, S.

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

Anderson, L. K.

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).

Balle, S.

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

Bergmann, K.

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

Buhray, H.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Cameron, K.

K. Doughty, K. Cameron, “Electron tuning of LEC lasers,” in Optical Technology for Microwave Applications II and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 136–142 (1992).
[CrossRef]

Cheung, K. W.

G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

Conroy, J. J.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Cook, B. D.

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967).
[CrossRef]

Coquin, G. A.

G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).

Crocker, A.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Denes, L. J.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Doughty, K.

K. Doughty, K. Cameron, “Electron tuning of LEC lasers,” in Optical Technology for Microwave Applications II and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 136–142 (1992).
[CrossRef]

Eberhardt, J. E.

Ehrlich, M. J.

M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
[CrossRef]

Faxvog, F. R.

Gottlieb, M.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Griffin, J. P.

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).

Hale, P. D.

F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
[CrossRef]

F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
[CrossRef]

Hansch, T. W.

P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

Harris, S. E.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

Haub, J. G.

Holly, S.

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

Hughes, R. S.

Hutcheson, L. D.

Ito, H.

K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
[CrossRef]

Jenkins, R. M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Johnson, M.

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Johnson, R. V.

R. V. Johnson, “Design of Acousto-Optic Modulators,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), Chap. 3, pp. 123–193.

Klein, W. R.

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967).
[CrossRef]

Kowalsi, F. V.

F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
[CrossRef]

F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
[CrossRef]

Kowalski, F. V.

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

Littler, I. C. M.

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

Miyahara, T.

K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
[CrossRef]

Mocker, H. W.

Nakamura, K.

K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
[CrossRef]

Nieh, S. T. K.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

Phillips, L. C.

M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering transducers,” IEEE Trans. Sonics Ultrason. SU-18, 209–214 (1971).
[CrossRef]

R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970).
[CrossRef]

Richter, P. I.

P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

Shattil, S. J.

F. V. Kowalsi, P. D. Hale, S. J. Shattil, “Broadband continuous-wave laser,” Opt. Lett. 13, 622–624 (1988).
[CrossRef]

F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
[CrossRef]

Singh, N. B.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Streifer, W.

W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970).
[CrossRef]

Suhre, D. R.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

Taylor, D. J.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

Wagner, J. W.

M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
[CrossRef]

Whinnery, J. R.

W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970).
[CrossRef]

Whitbourn, L. B.

Appl. Opt.

Appl. Phys. Lett.

D. J. Taylor, S. E. Harris, S. T. K. Nieh, T. W. Hansch, “Electronic tuning of a dye laser using the acousto-optic filter,” Appl. Phys. Lett. 19, 269–271 (1971).
[CrossRef]

W. Streifer, J. R. Whinnery, “Analysis of a dye laser tuned by an acousto-optic filter,” Appl. Phys. Lett. 17, 335–337 (1970).
[CrossRef]

F. V. Kowalsi, S. J. Shattil, P. D. Hale, “Optical pulse generation with a frequency shifted feedback laser,” Appl. Phys. Lett. 53, 734–736 (1988).
[CrossRef]

K. Nakamura, T. Miyahara, H. Ito, “Observation of a highly phase-correlated chirped frequency comb output from a frequency-shifted feedback laser,” Appl. Phys. Lett. 72, 2631–2633 (1998).
[CrossRef]

Electron. Lett.

G. A. Coquin, K. W. Cheung, “Electronically tunable external-cavity semiconductor laser,” Electron. Lett. 24, 599–600 (1988).
[CrossRef]

IEEE Trans. Sonics Ultrason.

W. R. Klein, B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. SU-13, 123–134 (1967).
[CrossRef]

G. A. Coquin, J. P. Griffin, L. K. Anderson, “Wide-band acoustooptic deflectors using acoustic beam steering,” IEEE Trans. Sonics Ultrason. SU-17, 499–505 (1970).

D. A. Pinnow, “Acousto-optic light deflection: design considerations for first order beam steering transducers,” IEEE Trans. Sonics Ultrason. SU-18, 209–214 (1971).
[CrossRef]

J. Appl. Phys.

R. L. Abrams, D. A. Pinnow, “Acousto-optic properties of crystalline germanium,” J. Appl. Phys. 41, 2765–2768 (1970).
[CrossRef]

J. Phys. E

A. Crocker, R. M. Jenkins, M. Johnson, “A frequency agile, sealed-off CO2 TEA laser,” J. Phys. E 18, 133–135 (1985).
[CrossRef]

Opt. Commun.

P. I. Richter, T. W. Hansch, “Diode lasers in external lasers with frequency-shifted feedback,” Opt. Commun. 85, 414–418 (1991).
[CrossRef]

S. Balle, I. C. M. Littler, K. Bergmann, F. V. Kowalski, “Frequency shifted feedback dye laser operating at a small shift frequency,” Opt. Commun. 102, 166–174 (1993).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

M. J. Ehrlich, L. C. Phillips, J. W. Wagner, “Voltage-controlled acousto-optic phase-shifter,” Rev. Sci. Instrum. 59, 2390–2392 (1988).
[CrossRef]

Other

A. P. Goutzoulis, D. R. Pape, eds., Design and Fabrication of Acousto-Optic Devices (Marcel Dekker, New York, 1994).

R. V. Johnson, “Design of Acousto-Optic Modulators,” in Design and Fabrication of Acousto-Optic Devices, A. P. Goutzoulis, D. R. Pape, eds. (Marcel Dekker, New York, 1994), Chap. 3, pp. 123–193.

L. J. Denes, M. Gottlieb, N. B. Singh, D. R. Suhre, H. Buhray, J. J. Conroy, “Rapid tuning mechanism for CO2 lasers,” in Gas Laser Technology, P. P. Chenausky, R. A. Sauerbrey, J. H. Tillotson, eds., Proc. SPIE894, 78–85 (1988).
[CrossRef]

K. Doughty, K. Cameron, “Electron tuning of LEC lasers,” in Optical Technology for Microwave Applications II and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. SPIE1703, 136–142 (1992).
[CrossRef]

S. Holly, S. Aiken, “Carbon dioxide probe laser with rapid wavelength switching,” in Advances in Laser Engineering I, M. L. Stitch, E. J. Woodbury, eds., Proc. SPIE122, 45–52 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Acousto-optic modulators and deflectors. Efficient diffraction occurs when momentum is conserved between the incident and diffracted optical waves, with k vectors k i and k d , and the acoustic wave with k vector K. (a) A phonon is absorbed from the upward-propagating acoustic wave, k d = k i + K and the diffracted light is upshifted in frequency. (b) A phonon is emitted to the downward-propagating acoustic wave, k d = k i - K and the diffracted light is downshifted. (c) An AO device in which a piezoelectric transducer generates an acoustic wave at the frequency of the radio-frequency (RF) source. Efficient diffraction occurs when both incident and diffracted beams are at the Bragg angle (θ B ) to the acoustic wave fronts.

Fig. 2
Fig. 2

Laser tuning using two AOD’s and a reflection grating. The resonator is formed by a reflection grating (G), a gain cell (GC), and an output coupler (OC). The two AOD’s (AOD1 and AOD2) determine the angle at the grating and thus the selected wavelength. Normally, radio frequency power sources RF1 and RF2 drive the deflectors at the same frequency, so there is no net frequency shift on the optical beam.

Fig. 3
Fig. 3

Laser tuning using two AOM’s. The resonator is formed by a high reflector (HR), a gain cell (GC), and an output coupler (OC). Only the selected wavelength is deflected by the two AOM’s (AOM1 and AOM2) so as to exactly retroreflect. The selected wavelength is always at the Bragg angle.

Fig. 4
Fig. 4

AOM efficiency. Static, diffraction, and overall efficiencies versus wavelength for an Isomet Model 1208-6 modulator. The static efficiency includes losses that are due to reflection at the optical surfaces as well as bulk absorption in the 30-mm-thick Ge modulator.

Fig. 5
Fig. 5

Experimental layout for a demonstration of rapid tuning. RF power for the two AOM’s comes from a single voltage-controlled oscillator (VCO) by way of a pair of RF amplifiers. An arbitrary function generator, controlled by a computer, generates the control voltage of the VCO as well as timed pulses for pumping of the RF-excited laser module. Diagnostics include a spectrometer and IR photodiodes. HR, high reflector; OC, output coupler; PD’s, photodiodes. RF power supply (P/S) for the laser module.

Fig. 6
Fig. 6

Oscillator output power versus wavelength for AO tuning demonstration.

Fig. 7
Fig. 7

Laser output waveforms for rapid tuning, alternating between 10P20 and 10R20 lines at 70 kHz. Also shown is the control voltage of the VCO, which determines the selected wavelength, and the timing pulses for laser discharge pumping.

Fig. 8
Fig. 8

Schematic of layout of the lidar system AO-tuned 5–10-kHz CO2 oscillator. The two AOM’s are driven from a single digital frequency synthesizer, but each have their own voltage-controlled amplifiers (VCA’s). The control voltages for the VCA’s are generated by digital-to-analog converts (DAC’s). The necessary data and timing signals for the frequency synthesizer and the two DAC’s and the timing signal for the laser discharge pumping are all generated by a computer control system. HR, high reflector.

Fig. 9
Fig. 9

Output pulse energy (filled circles) and energy stability (open circles) versus wavelength for a lidar system CO2 oscillator operating at 5 kHz.

Fig. 10
Fig. 10

Oscilloscope traces showing peak powers for two repeated tuning sequences at 5 kHz. (a) Scanning over 15 lines of the 9P branch (J = 10–38). (b) Scanning over the 9R20, 9P20, 10R20, and 10P20 lines with five shots each.

Fig. 11
Fig. 11

Typical pulse shapes for a strong line (10P20) and a weak line (9R30). The pulse widths (FWHM) for the two lines are also shown: 154 and 252 ns, respectively. The time axis reflects the different delays, relative to turn-on of the RF to the modulators, for the two lines.

Fig. 12
Fig. 12

Output pulse width (filled circles) and pulse-width stability (open circles) versus wavelength at 5 kHz.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λν/2Va=sin θB.
Q2πλ0Ln0Λ2  1,
η=V22sin2 σσ2,
σ2=V22+πδθδθA2.
ηmax=1-0.211 δθOδθA2,
δθs=n0Vac,
ηS=1-2δθSδθA2=1-2n0νaLc2.
η=1-παd82.

Metrics