Abstract

A calcium atomic beam has been decelerated by a single extended-cavity diode laser, frequency doubled to 423 nm. A potassium niobate crystal is placed in an external power buildup cavity, and the second-harmonic laser beam, counterpropagating with the atomic beam, is tuned into resonance with the strong 1 S 01 P 1 transition of calcium. For input power of 78 mW at 846 nm, we generate 22 mW at 423 nm after correction for the reflectivity of our cavity output coupler. To keep the atoms always in resonance during the deceleration process, the Zeeman tuning technique was used.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Chu, C. Wieman, eds., Laser Cooling and Trapping of Atoms, Special Issue of J. Opt. Soc. Am. B6, 2020–2270 (1989); H. Metcalf, P. van der Straten, “Cooling and trapping of neutral atoms,” Phys. Rep. 244, 203–286 (1994).
  2. D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
    [CrossRef]
  3. J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
    [CrossRef]
  4. F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).
  5. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
    [CrossRef] [PubMed]
  6. F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972).
    [CrossRef]
  7. D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
    [CrossRef]
  8. N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).
  9. E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  10. T. Kurosu, F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys. 29, L2127–L2129 (1990).
    [CrossRef]
  11. J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
    [CrossRef]
  12. C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.
  13. J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985); C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991); R. W. Fox, A. S. Zibrov, L. Hollberg, “Semiconductor diode lasers,” in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, in Vol. 3 of Methods of Experimental Physics, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, Calif., 1995) and references therein.
  14. F. Strumia, Dipartimento di Fisica, Universita di Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy (personal communication, March1998).
  15. F. Riehle, Physikalisch Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany (personal communication, 23November1998); T. Kurosu, G. Zinner, T. Trebst, F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A. 58, 4275–4278 (1998).
  16. A. Hemmerich, D. H. McIntyre, C. Zimmermann, T. H. Hänsch, “Second-harmonic generation and optical stabilization of a diode laser in an external ring resonator,” Opt. Lett. 15, 372–374 (1990).
    [CrossRef] [PubMed]
  17. J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).
  18. M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
    [CrossRef] [PubMed]
  19. T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983).
    [CrossRef]
  20. G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
    [CrossRef]
  21. H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
    [CrossRef]
  22. P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
    [CrossRef]
  23. N. F. Ramsey, Molecular Beams (Oxford U. Press, New York, 1990).
  24. F. Strumia, “Application of laser cooling to the atomic frequency standards,” in Laser Science and Technology, A. N. Chester, V. S. Letokov, S. Martellucci, eds. (Plenum, New York, 1988), pp. 367–401.
    [CrossRef]
  25. C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

1997 (2)

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
[CrossRef]

1996 (1)

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

1994 (2)

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
[CrossRef]

1991 (1)

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

1990 (2)

1989 (1)

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

1985 (1)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985); C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991); R. W. Fox, A. S. Zibrov, L. Hollberg, “Semiconductor diode lasers,” in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, in Vol. 3 of Methods of Experimental Physics, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, Calif., 1995) and references therein.

1983 (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983).
[CrossRef]

1978 (2)

M. G. Littman, H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17, 2224–2227 (1978).
[CrossRef] [PubMed]

D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
[CrossRef]

1972 (1)

F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972).
[CrossRef]

1968 (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Arruda, M. P.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Beverini, N.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

Bondu, F.

C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

Borde, C. J.

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

Boyd, G. D.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Camparo, J. C.

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985); C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991); R. W. Fox, A. S. Zibrov, L. Hollberg, “Semiconductor diode lasers,” in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, in Vol. 3 of Methods of Experimental Physics, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, Calif., 1995) and references therein.

Carelli, G.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Couillaud, B.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983).
[CrossRef]

Cruz, F. C.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Drullinger, R. E.

D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
[CrossRef]

Garcia, G. A.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Gomide, J. V. B.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Hänsch, T. H.

Hänsch, T. W.

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983).
[CrossRef]

Helmcke, J.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Hemmerich, A.

Hollberg, L.

C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

Hollberg, L. W.

C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.

Ishikawa, J.

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Kimble, H. J.

Kisters, T.

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Kleinman, D. A.

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

Kurosu, T.

T. Kurosu, F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys. 29, L2127–L2129 (1990).
[CrossRef]

Lipphardt, B.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Littman, M. G.

Liu, L.-L.

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Lodahl, P.

P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
[CrossRef]

Mabuchi, H.

Maccioni, E.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

Massa, C. A.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

McIntyre, D. H.

Metcalf, H. J.

Moraes, J. C. S.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

Moretti, A.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

Morinaga, A.

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

Oates, C. W.

C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.

C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

Pereira, D.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

Polaquini, A. J.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Polzik, E. S.

P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
[CrossRef]

H. Mabuchi, E. S. Polzik, H. J. Kimble, “Blue-light-induced infrared absorption in KNbO3,” J. Opt. Soc. Am. B 11, 2023–2029 (1994).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Ramsey, N. F.

N. F. Ramsey, Molecular Beams (Oxford U. Press, New York, 1990).

Riehle, F.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

F. Riehle, Physikalisch Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany (personal communication, 23November1998); T. Kurosu, G. Zinner, T. Trebst, F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A. 58, 4275–4278 (1998).

Scalabrin, A.

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

Schnatz, H.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Shimizu, F.

T. Kurosu, F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys. 29, L2127–L2129 (1990).
[CrossRef]

Sorensen, J. L.

P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
[CrossRef]

Stephens, M.

C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.

Strumia, F.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972).
[CrossRef]

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

F. Strumia, Dipartimento di Fisica, Universita di Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy (personal communication, March1998).

F. Strumia, “Application of laser cooling to the atomic frequency standards,” in Laser Science and Technology, A. N. Chester, V. S. Letokov, S. Martellucci, eds. (Plenum, New York, 1988), pp. 367–401.
[CrossRef]

Telles, E. M.

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

Vissani, G.

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

Walls, F. L.

D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
[CrossRef]

Wineland, D. J.

D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
[CrossRef]

Witte, A.

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Yuan, X.

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

Zimmermann, C.

Zinner, G.

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

P. Lodahl, J. L. Sorensen, E. S. Polzik, “High efficiency second harmonic generation with a low power diode laser,” Appl. Phys. B 64, 383–386 (1997).
[CrossRef]

Braz. J. Phys. (1)

J. V. B. Gomide, G. A. Garcia, F. C. Cruz, A. J. Polaquini, M. P. Arruda, D. Pereira, A. Scalabrin, “Construction of an atomic beam system and efficient production of metastable states,” Braz. J. Phys. 27, 266–275 (1997).

Contemp. Phys. (1)

J. C. Camparo, “The diode laser in atomic physics,” Contemp. Phys. 26, 443–477 (1985); C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991); R. W. Fox, A. S. Zibrov, L. Hollberg, “Semiconductor diode lasers,” in Atomic, Molecular, and Optical Physics: Electromagnetic Radiation, in Vol. 3 of Methods of Experimental Physics, F. B. Dunning, R. G. Hulet, eds. (Academic, San Diego, Calif., 1995) and references therein.

IEEE Trans. Instrum. Meas. (1)

J. Helmcke, A. Morinaga, J. Ishikawa, F. Riehle, “Optical frequency standards,” IEEE Trans. Instrum. Meas. 38, 524–532 (1989).
[CrossRef]

Int. J. Infrared Millimeter Waves (1)

D. Pereira, J. C. S. Moraes, E. M. Telles, A. Scalabrin, F. Strumia, A. Moretti, G. Carelli, C. A. Massa, “A review of optically pumped far-infrared laser lines from methanol isotopes,” Int. J. Infrared Millimeter Waves 15, 1–44 (1994); G. Moruzzi, J. C. S. Moraes, F. Strumia, “Far infrared laser lines and assignments of CH3OH: a review,” Int. J. Infrared Millimeter Waves 13, 1269–1312 (1992).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd, D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639 (1968).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Kurosu, F. Shimizu, “Laser cooling and trapping of calcium and strontium,” Jpn. J. Appl. Phys. 29, L2127–L2129 (1990).
[CrossRef]

Metrologia (1)

F. Strumia, “A proposal for a new absolute frequency standard, using a Mg or Ca atomic beam,” Metrologia 8, 85–90 (1972).
[CrossRef]

Opt. Commun. (1)

T. W. Hänsch, B. Couillaud, “Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity,” Opt. Commun. 35, 441–444 (1983).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (4)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

F. Riehle, T. Kisters, A. Witte, J. Helmcke, C. J. Borde, “Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer,” Phys. Rev. Lett. 67, 177–180 (1991); A. Morinaga, Y. Ohuchi, S. Yanagimachi, T. Tako, “Interference fringes of the atom interferometer comprised of four copropagating traveling laser beams,” in Proceedings of the Fifth Symposium on Frequency Standards and Metrology, Woods Hole, Mass. (World Scientific, Singapore, 1995).

H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18–21 (1996).
[CrossRef] [PubMed]

D. J. Wineland, R. E. Drullinger, F. L. Walls, “Radiation-pressure cooling of bound resonant absorbers,” Phys. Rev. Lett. 40, 1639–1642 (1978); J. C. Bergquist, ed., Proceedings of the Fifth Symposium on Frequency Standards and Metrology (World Scientific, Singapore, 1996).
[CrossRef]

Other (9)

S. Chu, C. Wieman, eds., Laser Cooling and Trapping of Atoms, Special Issue of J. Opt. Soc. Am. B6, 2020–2270 (1989); H. Metcalf, P. van der Straten, “Cooling and trapping of neutral atoms,” Phys. Rep. 244, 203–286 (1994).

N. Beverini, E. Maccioni, D. Pereira, F. Strumia, G. Vissani, “Laser cooling in calcium and magnesium atomic beams,” in Proceedings of the Fourth Symposium on Frequency Standards and Metrology, A. De Marchi, ed. (Springer-Verlag, Berlin, 1988), pp. 282–284; N. Beverini, F. Giammanco, E. Maccioni, F. Strumia, G. Vissani, “Measurement of the calcium 1P1–1D2 transition rate in a laser-cooled atomic beam,” J. Opt. Soc. Am. B 6, 2188–2193 (1989).

J. Helmcke, F. Riehle, J. Ishikawa, A. Witte, T. Kisters, L.-L. Liu, X. Yuan, “Optical frequency standard based on laser cooled Ca atoms,” in Light Induced Kinetic Effects on Atoms, Ions, and Molecules, L. Moi, S. Gozzini, C. Gabbanini, E. Arimondo, F. Strumia, eds. (ETS Editrice, Pisa, Italy, 1991); A. Witte, T. Kisters, F. Riehle, J. Helmcke, “Laser cooling and deflection of a calcium atomic beam,” J. Opt. Soc. Am. B 9, 1030–1037 (1992).
[CrossRef]

C. W. Oates, M. Stephens, L. W. Hollberg, “A compact, all-diode-laser optical frequency reference based on laser-trapped atomic calcium,” in 1997 IEEE International Frequency Control Symposium (Institute of Electrical and Electronics Engineers, New York, 1997), pp. 219–224.

F. Strumia, Dipartimento di Fisica, Universita di Pisa, via F. Buonarroti 2, I-56127 Pisa, Italy (personal communication, March1998).

F. Riehle, Physikalisch Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany (personal communication, 23November1998); T. Kurosu, G. Zinner, T. Trebst, F. Riehle, “Method for quantum-limited detection of narrow-linewidth transitions in cold atomic ensembles,” Phys. Rev. A. 58, 4275–4278 (1998).

N. F. Ramsey, Molecular Beams (Oxford U. Press, New York, 1990).

F. Strumia, “Application of laser cooling to the atomic frequency standards,” in Laser Science and Technology, A. N. Chester, V. S. Letokov, S. Martellucci, eds. (Plenum, New York, 1988), pp. 367–401.
[CrossRef]

C. W. Oates, F. Bondu, L. Hollberg, “Laser cooling and trapping of alkaline Earth atoms: application to a Ca optical frequency reference,” in Proceedings of the 16th International Conference on Atomic Physics, W. E. Baylis, G. W. F. Drake, eds. (American Institute of Physics, Woodbury, N.Y., 1998), p. 115.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Conversion efficiency for SHG of radiation at 846 nm with KNbO3 in an external power buildup cavity. The deviation from the line, corresponding to η = P /(P ω)2 = 0.017 W-1, is due to BLIIRA.21

Fig. 2
Fig. 2

Doppler-broadened spectrum of the calcium 1 S 01 P 1 transition at 423 nm. The peak at the right corresponds to zero velocity and was obtained with a laser beam perpendicular to the atomic beam. The dotted curve is a fit to a Maxwell–Boltzmann distribution for an atomic beam.

Fig. 3
Fig. 3

Experimental setup for observing fluorescence at 423 nm of the calcium atomic beam. A photodiode (PD) is moved along the glass tube.

Fig. 4
Fig. 4

Magnetic-field profile, a), and fluorescence of calcium at 423 nm along the direction of the atomic beam when the magnetic field is turned on, b), and off, c). The coil is positioned between z = 0 and z = 40 cm.

Metrics