Abstract

The characteristics of a dual-fiber-optic sensor for measurements of chlorophyll fluorescence in aquatic environments were evaluated with a theoretical model. Consideration was given to sampling variability and package effects associated with particles (e.g., phytoplankton cells). A numerical simulation was developed to approximate the optical geometry of the dual fiber-optic sensor that permitted a visual representation of the fluorescence distribution within the sensor sampling volume. A Monte Carlo simulation was used to evaluate sampling variability associated with the number and distribution of particles within the sampling volume. Relatively high coefficients of variation were associated with low particle concentrations, although with sufficient signal averaging the coefficient of variation was reduced to less than 20%. The influence of package effects and intracellular absorption of fluorescence was evaluated with a simplified form of the model that treated fluorescence as a linear function of particle density and assumed uniform particle composition, constant fluorescence cross-sectional yield, and sufficient averaging of the fluorescence signal. The model predicted decreasing fluorescence per unit of chlorophyll with increasing values of the product of particle diameter and intraparticle chlorophyll concentration. Experimental trends in size dependence of chlorophyll–fluorescence relationships were compared with predictions of the model.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Strass, “On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles,” Deep-Sea Res. 37, 525–540 (1990).
    [CrossRef]
  2. C. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep-Sea Res. 41, 391–410 (1994).
    [CrossRef]
  3. D. A. Kiefer, “Fluorescence properties of natural phytoplankton populations,” Mar. Biol. 22, 263–269 (1973).
    [CrossRef]
  4. A. E. Alpine, J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res. 7, 381–390 (1985).
    [CrossRef]
  5. D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
    [CrossRef]
  6. P. Falkowski, D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res. 7, 715–731 (1985).
    [CrossRef]
  7. A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).
  8. B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
    [CrossRef]
  9. G. Papageorgio, “Chlorophyll fluorescence: an intrinsic probe of photosynthesis,” in Bioenergetics of Photosynthesis, R. Govindjee, ed. (Academic, New York, 1975), pp. 319–371.
  10. K. K. Karukstis, “Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus,” in Chlorophylls, H. Scheer, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 769–795.
  11. Z. Kolber, P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646–1665 (1993).
    [CrossRef]
  12. T. J. Cowles, R. A. Desiderio, “Resolution of biological microstructure through in situ fluorescence emission spectra,” Oceanography 6, 105–111 (1993).
    [CrossRef]
  13. R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
    [CrossRef]
  14. E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
    [CrossRef]
  15. E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).
  16. P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation et optimisation des capteurs a fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
    [CrossRef]
  17. H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
    [CrossRef]
  18. A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A, 1375–1393 (1981).
    [CrossRef]
  19. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge U. Press, New York, 1994).
    [CrossRef]
  20. R. J. Geider, B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Mar. Biol. 96, 299–308 (1987).
    [CrossRef]
  21. H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979).
    [CrossRef] [PubMed]
  22. N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).
    [CrossRef]
  23. B. G. Mitchell, D. A. Kiefer, “Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res. 35, 665–689 (1988).
    [CrossRef]
  24. S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
    [CrossRef]
  25. A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
    [CrossRef]
  26. Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
    [CrossRef]
  27. G. Johnsen, E. Sakshaug, “Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gyrodinium galatheanum, and two strains of Prorocentrum minimum,” J. Phycol. 29, 627–642 (1993).
    [CrossRef]
  28. R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanley, eds. (Plenum, New York, 1975), pp. 29–60.
    [CrossRef]
  29. P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Malden, Mass., 1997).
  30. E. J. D’Sa, “Pigment dynamics in a coastal bottom boundary layer and its relation to the physical regime: measurements using an in situ fiber-optic fluorometer,” Ph.D. dissertation (University of Southern Mississippi, Hattiesburg, Miss., 1996), p. 185.

1997 (1)

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

1994 (1)

C. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep-Sea Res. 41, 391–410 (1994).
[CrossRef]

1993 (6)

Z. Kolber, P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646–1665 (1993).
[CrossRef]

T. J. Cowles, R. A. Desiderio, “Resolution of biological microstructure through in situ fluorescence emission spectra,” Oceanography 6, 105–111 (1993).
[CrossRef]

R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
[CrossRef]

H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
[CrossRef]

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).
[CrossRef]

G. Johnsen, E. Sakshaug, “Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gyrodinium galatheanum, and two strains of Prorocentrum minimum,” J. Phycol. 29, 627–642 (1993).
[CrossRef]

1992 (1)

Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

1990 (1)

V. Strass, “On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles,” Deep-Sea Res. 37, 525–540 (1990).
[CrossRef]

1988 (3)

A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res. 35, 665–689 (1988).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

1987 (2)

R. J. Geider, B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Mar. Biol. 96, 299–308 (1987).
[CrossRef]

S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[CrossRef]

1986 (2)

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

P. Plaza, N. Q. Dao, M. Jouan, H. Fevrier, H. Saisse, “Simulation et optimisation des capteurs a fibres optiques adjacentes,” Appl. Opt. 25, 3448–3454 (1986).
[CrossRef]

1985 (3)

A. E. Alpine, J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res. 7, 381–390 (1985).
[CrossRef]

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

P. Falkowski, D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res. 7, 715–731 (1985).
[CrossRef]

1981 (1)

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A, 1375–1393 (1981).
[CrossRef]

1979 (1)

1973 (1)

D. A. Kiefer, “Fluorescence properties of natural phytoplankton populations,” Mar. Biol. 22, 263–269 (1973).
[CrossRef]

Ahn, Y.

Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

Alpine, A. E.

A. E. Alpine, J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res. 7, 381–390 (1985).
[CrossRef]

Asper, V. L.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

Bédhomme, A.-L.

A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
[CrossRef]

Bricaud, A.

Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
[CrossRef]

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A, 1375–1393 (1981).
[CrossRef]

Cloern, J. E.

A. E. Alpine, J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res. 7, 381–390 (1985).
[CrossRef]

Collins, D. J.

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

Cowles, T. J.

T. J. Cowles, R. A. Desiderio, “Resolution of biological microstructure through in situ fluorescence emission spectra,” Oceanography 6, 105–111 (1993).
[CrossRef]

R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
[CrossRef]

D’Sa, E. J.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

E. J. D’Sa, “Pigment dynamics in a coastal bottom boundary layer and its relation to the physical regime: measurements using an in situ fiber-optic fluorometer,” Ph.D. dissertation (University of Southern Mississippi, Hattiesburg, Miss., 1996), p. 185.

Dao, N. Q.

Desiderio, R. A.

T. J. Cowles, R. A. Desiderio, “Resolution of biological microstructure through in situ fluorescence emission spectra,” Oceanography 6, 105–111 (1993).
[CrossRef]

R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
[CrossRef]

Falkowski, P.

P. Falkowski, D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res. 7, 715–731 (1985).
[CrossRef]

Falkowski, P. G.

Z. Kolber, P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646–1665 (1993).
[CrossRef]

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Malden, Mass., 1997).

Fevrier, H.

Geider, R. J.

R. J. Geider, B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Mar. Biol. 96, 299–308 (1987).
[CrossRef]

Gordon, H. R.

H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
[CrossRef]

H. R. Gordon, “Diffuse reflectance of the ocean: the theory of its augmentation by chlorophyll a fluorescence at 685 nm,” Appl. Opt. 18, 1161–1166 (1979).
[CrossRef] [PubMed]

Guillard, R. R. L.

R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanley, eds. (Plenum, New York, 1975), pp. 29–60.
[CrossRef]

Hoepffner, N.

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).
[CrossRef]

Johnsen, G.

G. Johnsen, E. Sakshaug, “Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gyrodinium galatheanum, and two strains of Prorocentrum minimum,” J. Phycol. 29, 627–642 (1993).
[CrossRef]

Jouan, M.

Karukstis, K. K.

K. K. Karukstis, “Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus,” in Chlorophylls, H. Scheer, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 769–795.

Kiefer, D. A.

B. G. Mitchell, D. A. Kiefer, “Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res. 35, 665–689 (1988).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

P. Falkowski, D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res. 7, 715–731 (1985).
[CrossRef]

D. A. Kiefer, “Fluorescence properties of natural phytoplankton populations,” Mar. Biol. 22, 263–269 (1973).
[CrossRef]

Kilpatrick, K. A.

H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge U. Press, New York, 1994).
[CrossRef]

Kolber, Z.

Z. Kolber, P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646–1665 (1993).
[CrossRef]

Lazzara, L.

S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[CrossRef]

Lohrenz, S. E.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

McDermid, I. S.

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

Mitchell, B. G.

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res. 35, 665–689 (1988).
[CrossRef]

Morel, A.

Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
[CrossRef]

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A, 1375–1393 (1981).
[CrossRef]

Morris, M. J.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

Moum, J. N.

R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
[CrossRef]

Osborne, B. A.

R. J. Geider, B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Mar. Biol. 96, 299–308 (1987).
[CrossRef]

Papageorgio, G.

G. Papageorgio, “Chlorophyll fluorescence: an intrinsic probe of photosynthesis,” in Bioenergetics of Photosynthesis, R. Govindjee, ed. (Academic, New York, 1975), pp. 319–371.

Plaza, P.

Prieur, L.

S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[CrossRef]

Rathbun, C.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

Raven, J. A.

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Malden, Mass., 1997).

Saisse, H.

Sakshaug, E.

G. Johnsen, E. Sakshaug, “Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gyrodinium galatheanum, and two strains of Prorocentrum minimum,” J. Phycol. 29, 627–642 (1993).
[CrossRef]

Sathyendranath, S.

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).
[CrossRef]

S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[CrossRef]

SooHoo, J. B.

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

Strass, V.

V. Strass, “On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles,” Deep-Sea Res. 37, 525–540 (1990).
[CrossRef]

Voss, K. J.

H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
[CrossRef]

Walters, R. A.

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

Wirick, C.

C. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep-Sea Res. 41, 391–410 (1994).
[CrossRef]

Appl. Opt. (2)

Can. Bull. Fish. Aquat. Sci. (1)

A. Morel, A. Bricaud, “Inherent optical properties of algal cells including picoplankton: theoretical and experimental results,” Can. Bull. Fish. Aquat. Sci. 214, 521–559 (1986).

Deep-Sea Res. (7)

B. G. Mitchell, D. A. Kiefer, “Chlorophyll a specific absorption and fluorescence excitation spectra for light-limited phytoplankton,” Deep-Sea Res. 35, 639–663 (1988).
[CrossRef]

V. Strass, “On the calibration of large-scale fluorometric chlorophyll measurements from towed undulating vehicles,” Deep-Sea Res. 37, 525–540 (1990).
[CrossRef]

C. Wirick, “Exchange of phytoplankton across the continental shelf-slope boundary of the Middle Atlantic Bight during spring 1988,” Deep-Sea Res. 41, 391–410 (1994).
[CrossRef]

D. J. Collins, D. A. Kiefer, J. B. SooHoo, I. S. McDermid, “The role of reabsorption in the spectral distribution of phytoplankton fluorescence emission,” Deep-Sea Res. 32, 983–1003 (1985).
[CrossRef]

B. G. Mitchell, D. A. Kiefer, “Variability in pigment specific particulate fluorescence and absorption spectra in the northeastern Pacific Ocean,” Deep-Sea Res. 35, 665–689 (1988).
[CrossRef]

Y. Ahn, A. Bricaud, A. Morel, “Light backscattering efficiency and related properties of some phytoplankters,” Deep-Sea Res. 39, 1835–1855 (1992).
[CrossRef]

A. Morel, A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep-Sea Res. 28A, 1375–1393 (1981).
[CrossRef]

J. Atmos. Ocean. Technol. (2)

R. A. Desiderio, T. J. Cowles, J. N. Moum, “Microstructure profiles of laser-induced chlorophyll fluorescence spectra: evaluation of backscatter and forward-scatter fiber-optic sensors,” J. Atmos. Ocean. Technol. 10, 209–224 (1993).
[CrossRef]

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, “Time series measurements of chlorophyll fluorescence in the oceanic bottom boundary layer with a multisensor fiber-optic fluorometer,” J. Atmos. Ocean. Technol. 14, 889–896 (1997).
[CrossRef]

J. Geophys. Res. (1)

N. Hoepffner, S. Sathyendranath, “Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter,” J. Geophys. Res. 98, 22,789–22,803 (1993).
[CrossRef]

J. Phycol. (1)

G. Johnsen, E. Sakshaug, “Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates Gyrodinium aureolum, Gyrodinium galatheanum, and two strains of Prorocentrum minimum,” J. Phycol. 29, 627–642 (1993).
[CrossRef]

J. Plank. Res. (1)

A. Bricaud, A.-L. Bédhomme, A. Morel, “Optical properties of diverse phytoplanktonic species: experimental results and theoretical interpretation,” J. Plank. Res. 10, 851–873 (1988).
[CrossRef]

J. Plankton Res. (2)

A. E. Alpine, J. E. Cloern, “Differences in in vivo fluorescence yield between three phytoplankton size classes,” J. Plankton Res. 7, 381–390 (1985).
[CrossRef]

P. Falkowski, D. A. Kiefer, “Chlorophyll a fluorescence in phytoplankton: relationship to photosynthesis and biomass,” J. Plankton Res. 7, 715–731 (1985).
[CrossRef]

Limnol. Oceanogr. (3)

S. Sathyendranath, L. Lazzara, L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[CrossRef]

Z. Kolber, P. G. Falkowski, “Use of active fluorescence to estimate phytoplankton photosynthesis in situ,” Limnol. Oceanogr. 38, 1646–1665 (1993).
[CrossRef]

H. R. Gordon, K. J. Voss, K. A. Kilpatrick, “Angular distribution of fluorescence from phytoplankton,” Limnol. Oceanogr. 38, 1582–1586 (1993).
[CrossRef]

Mar. Biol. (2)

R. J. Geider, B. A. Osborne, “Light absorption by a marine diatom: experimental observations and theoretical calculations of the package effect in a small Thalassiosira species,” Mar. Biol. 96, 299–308 (1987).
[CrossRef]

D. A. Kiefer, “Fluorescence properties of natural phytoplankton populations,” Mar. Biol. 22, 263–269 (1973).
[CrossRef]

Oceanography (1)

T. J. Cowles, R. A. Desiderio, “Resolution of biological microstructure through in situ fluorescence emission spectra,” Oceanography 6, 105–111 (1993).
[CrossRef]

Other (7)

E. J. D’Sa, S. E. Lohrenz, V. L. Asper, R. A. Walters, M. J. Morris, C. Rathbun, “A multi-sensor in situ fiber-optic fluorometer,” in Ocean Optics XII, J. S. Jaffe, ed., Proc. SPIE2258, 793–796 (1994).

G. Papageorgio, “Chlorophyll fluorescence: an intrinsic probe of photosynthesis,” in Bioenergetics of Photosynthesis, R. Govindjee, ed. (Academic, New York, 1975), pp. 319–371.

K. K. Karukstis, “Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus,” in Chlorophylls, H. Scheer, ed. (CRC Press, Boca Raton, Fla., 1991), pp. 769–795.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. (Cambridge U. Press, New York, 1994).
[CrossRef]

R. R. L. Guillard, “Culture of phytoplankton for feeding marine invertebrates,” in Culture of Marine Invertebrate Animals, W. L. Smith, M. H. Chanley, eds. (Plenum, New York, 1975), pp. 29–60.
[CrossRef]

P. G. Falkowski, J. A. Raven, Aquatic Photosynthesis (Blackwell Science, Malden, Mass., 1997).

E. J. D’Sa, “Pigment dynamics in a coastal bottom boundary layer and its relation to the physical regime: measurements using an in situ fiber-optic fluorometer,” Ph.D. dissertation (University of Southern Mississippi, Hattiesburg, Miss., 1996), p. 185.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Orientation of optical fibers and their corresponding cones of excitation and detection. For the sensor considered here the interfiber angle was 30° and the distance from the fiber face to the axial intersection of the excitation and detection fibers as determined from sensor geometry was approximately 2 mm. The acceptance angle α of the fiber in seawater was 17.4°. (b) Visualization of the intersection volume of cones of excitation and detection for the dual-fiber-optic sensor.

Fig. 2
Fig. 2

(a) Cartesian-coordinate systems were defined as shown for the excitation and detection fibers. (b) Illumination of point M by a point source lying upon the face of the excitation fiber. Radiance propagates from the source as a spherical cap within a conical region defined by the fiber’s numerical aperture. (c) Relationship between the detection fiber and a point source of fluorescence in the sampling volume. See text for further explanation.

Fig. 3
Fig. 3

(a) Distribution of fluorescence calculated by Eq. (6) for a 0.2-mm-wide section through the sampling volume in the xz plane of the coordinate systems shown in Fig. 2(a). Thick bars, surfaces of the excitation and detection fibers. Diameters of the symbols indicate the relative magnitude of fluorescence. Fluorescence cross-sectional yield and irradiance from the excitation optical fiber were set to unity. A uniform distribution of particles was assumed, with a concentration of 1.25 × 1011 particles/m3. (b) Fluorescence distribution as in (a) but for the entire sample volume containing a random distribution of 100 particles.

Fig. 4
Fig. 4

Frequency distribution for fluorescence that is due to each particle shown in Fig. 3(b).

Fig. 5
Fig. 5

Frequency distributions for 100 means, each derived from 10 modeled observations (N obs = 10) of fluorescence for which particles were randomly distributed within the sampling volume. Means were more narrowly distributed and more closely approximated a normal distribution as the number of particles in the sampling volume, N s , increased.

Fig. 6
Fig. 6

Optical absorption efficiencies varied as a function of the product of intracellular chlorophyll concentration c i and cell diameter d. (a) Values of Q a (440) calculated from Eq. (12) with a value of 0.071 m2/mg of chlorophyll. Symbols correspond to data from Table 2 as follows: ×, Ref. 24; ▽, Ref. 26; ○, Ref. 27. (b) Values of Q a (675) calculated from Eq. (12) with a value of 0.021 m2/mg of chlorophyll. Symbols correspond to data from Table 2 as follows: △, Ref. 7; +, Ref. 25; ▽, Ref. 26; ○, Ref. 27. (c) We estimated the value of a*(440) as a function of the product dc i (dotted curve) by first calculating Q a (440) from Eq. (12) and then solving Eq. (8) for a*(440). We determined the value of Qa*(675) (dashed curve) by estimating Q a (675) from Eq. (12) and using this value to determine Qa*(675) from Eq. (9). Solid curve, the fractional reduction in fluorescence as a result of the combination of package effects and intracellular absorption of fluorescence.

Fig. 7
Fig. 7

Differences among phytoplankton cultures were observed in the slopes of the chlorophyll–fluorescence relationships as detected by the dual-fiber-optic sensor. Units of fluorescence were analog-to-digital converter counts. Cultures were diluted with artificial seawater to give similar ranges of chlorophyll concentrations. The slope of the regression (solid line) for N. atomus was significantly higher than for Thalassiosira sp. or A. carterae, consistent with model predictions [see Fig. 6(c)]. Each data point represents an average of ten individual observations. Regression statistics are given in Table 4.

Tables (5)

Tables Icon

Table 1 Statistics of Monte Carlo Simulation of Random Distributions of Particles within the Sampling Volume

Tables Icon

Table 2 Absorption Efficiency Factors for Several Phytoplankton Species

Tables Icon

Table 3 Characteristics of Phytoplankton Cultures Used for Experimental Evaluations

Tables Icon

Table 4 Regression Results for Fluorescence–Chlorophyll Relationships of Phytoplankton Culturesa

Tables Icon

Table 5 Standard Errors of Estimate for Regressions Compared with Estimated Particle Concentrations in Sampling Volume

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

dE0=P0πR12rdrdθ2π1-cos αζ12,
E0M=θ=02πr=0R1 χ1r, θdE0,
PfM=E0Mβ,
dFdM, r2, θ=PfMcos φrdrdθ4πζ22.
FdM=PfMθ=02πr=0R2 χ2r, θcos φrdrdθ4πζ22,
Fdt=j=1Ns FdMj.
Fdt=G P0πR12 βNs,
Qa=a*cid,
Qa*=a*asol*=32Qaacmd,
Pfcell=E0ϕfπd24 Qa-ex,
Fdt=G P0πR12 ϕfπd24 Qa-exNs,
Qaλ=1+2 exp-ρλρλ+2exp-ρλ-1ρλ2,
Fdt=G P0πR12 ϕfπd24 Qa-exNsQa-em*.
Fdt=G P0πR12 VsϕfChl a32dci Qa-exQa-em*.

Metrics