Abstract

We present measurements of thermal and optical properties of poly(methyl methacrylate) (PMMA), PMMA modified by the addition of ethanol (MPMMA), and copolymers of methyl methacrylate with 2-hydroxyethyl methacrylate [P(HEMA:MMA)]. Spectral transmission of the polymers is excellent (α = 0.5 cm-1 at 400 nm, decreasing to 0.04 cm-1 at 633 nm). Measured laser damage thresholds of MPMMA and P(HEMA:MMA) show at least a twofold increase over PMMA. Thermal lensing measured in these hosts doped with Rhodamine 6G is shown to be similar (f = -450 mm for pump power of 200 mW in a 2-mm-diameter spot, scaling with pump intensity). Compared with MPMMA, P(HEMA:MMA) offers an improved surface quality and a more uniform dye distribution.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
    [CrossRef]
  2. D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
    [CrossRef]
  3. M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in solgel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8271 (1995).
    [CrossRef] [PubMed]
  4. A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
    [CrossRef]
  5. M. Canva, P. Georges, J-F. Perelgritz, A. Brun, F. Chaput, J-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34, 428–431 (1995).
    [CrossRef] [PubMed]
  6. O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
    [CrossRef]
  7. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. S. Tsaprilov, “Influence of viscoelastic properties of the matrix and of the type of plasticizer on the optical strength of transparent polymers,” Sov. J. Quantum Electron. 12, 838–840 (1982).
    [CrossRef]
  8. M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
    [CrossRef]
  9. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
    [CrossRef]
  10. F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
    [CrossRef] [PubMed]
  11. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 2, 1028–1031 (1995).
    [CrossRef]
  12. A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
    [CrossRef]
  13. A. Maslyukov, S. Sokolov, M. Kaivola, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
    [CrossRef] [PubMed]
  14. A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
    [CrossRef]
  15. F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
    [CrossRef]
  16. H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
    [CrossRef]
  17. M. J. Cazeca, X. J. Jiang, J. Kumar, S. K. Tripathy, “Epoxy matrix for solid-state dye laser applications,” Appl. Opt. 36, 4965–4968 (1997).
    [CrossRef] [PubMed]
  18. F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
    [CrossRef]
  19. W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
    [CrossRef]
  20. G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Harlow, Essex, 1995).
  21. A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
    [CrossRef] [PubMed]

1997 (2)

M. J. Cazeca, X. J. Jiang, J. Kumar, S. K. Tripathy, “Epoxy matrix for solid-state dye laser applications,” Appl. Opt. 36, 4965–4968 (1997).
[CrossRef] [PubMed]

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

1995 (10)

A. Tagaya, Y. Koike, E. Nihei, S. Teramoto, K. Fujii, T. Yamamoto, K. Sasaki, “Basic performance of an organic dye-doped polymer optical fiber amplifier,” Appl. Opt. 34, 988–992 (1995).
[CrossRef] [PubMed]

D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Efficient plastic-host dye lasers,” J. Opt. Soc. Am. B 2, 1028–1031 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

A. Maslyukov, S. Sokolov, M. Kaivola, S. Popov, “Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements,” Appl. Opt. 34, 1516–1518 (1995).
[CrossRef] [PubMed]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

M. D. Rahn, T. A. King, “Comparison of laser performance of dye molecules in solgel, polycom, ormosil, and poly(methyl methacrylate) host media,” Appl. Opt. 34, 8260–8271 (1995).
[CrossRef] [PubMed]

A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
[CrossRef]

M. Canva, P. Georges, J-F. Perelgritz, A. Brun, F. Chaput, J-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34, 428–431 (1995).
[CrossRef] [PubMed]

1994 (2)

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

1992 (1)

1989 (1)

M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
[CrossRef]

1982 (1)

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. S. Tsaprilov, “Influence of viscoelastic properties of the matrix and of the type of plasticizer on the optical strength of transparent polymers,” Sov. J. Quantum Electron. 12, 838–840 (1982).
[CrossRef]

1968 (1)

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

1967 (1)

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Amat-Guerri, F.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Beck, A.

A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
[CrossRef]

Bentivenga, F.

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Boilot, J-P.

Bondar, M. V.

M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
[CrossRef]

Brouwer, H-J.

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

Brun, A.

M. Canva, P. Georges, J-F. Perelgritz, A. Brun, F. Chaput, J-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34, 428–431 (1995).
[CrossRef] [PubMed]

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Canva, M.

M. Canva, P. Georges, J-F. Perelgritz, A. Brun, F. Chaput, J-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34, 428–431 (1995).
[CrossRef] [PubMed]

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Cazeca, M. J.

Chaput, F.

Costela, A.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

Duarte, F. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. J. Duarte, “Solid-state multiple-prism grating dye-laser oscillators,” Appl. Opt. 33, 3857–3860 (1994).
[CrossRef] [PubMed]

Duchowicz, R.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Dyumaev, K. M.

Erlich, J. J.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Figuera, J. M.

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

Figurea, J. M.

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Florido, F.

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Fujii, K.

Garcia-Moreno, I.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

Georges, P.

M. Canva, P. Georges, J-F. Perelgritz, A. Brun, F. Chaput, J-P. Boilot, “Perylene- and pyrromethene-doped xerogel for a pulsed laser,” Appl. Opt. 34, 428–431 (1995).
[CrossRef] [PubMed]

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Gromov, D. A.

Hadziioannou, G.

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

Hilberer, A.

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

Jiang, X. J.

Kaivola, M.

Kaye, G. W. C.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Harlow, Essex, 1995).

King, T. A.

Koechner, W.

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

Koike, Y.

Krasnikov, V. V.

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

Kumar, J.

Laby, T. H.

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Harlow, Essex, 1995).

Langhoff, H.

A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
[CrossRef]

Larrue, D.

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Manenkov, A. A.

Maslyukov, A.

Maslyukov, A. P.

Matyushin, G. A.

McFarland, B. B.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Nechitailo, V. S.

Nihei, E.

Perelgritz, J-F.

Peterson, O. G.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Popov, S.

Prokhorov, A. M.

Przhonskaya, O. V.

M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
[CrossRef]

Rahn, M. D.

Sasaki, K.

Sastre, R.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

Snavely, B. B.

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

Soffer, B. H.

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

Sokolov, S.

Tagaya, A.

Taylor, T. S.

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Teramoto, S.

Tikhonov, E. A.

M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
[CrossRef]

Tripathy, S. K.

Tsaprilov, A. S.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. S. Tsaprilov, “Influence of viscoelastic properties of the matrix and of the type of plasticizer on the optical strength of transparent polymers,” Sov. J. Quantum Electron. 12, 838–840 (1982).
[CrossRef]

Weissbeck, A.

A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
[CrossRef]

Wildeman, J.

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

Yamamoto, T.

Zarzycki, J.

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. B (2)

A. Costela, F. Florido, I. Garcia-Moreno, R. Duchowicz, F. Amat-Guerri, J. M. Figuera, R. Sastre, “Solid-state dye lasers based on copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate doped with Rhodamine 6G,” Appl. Phys. B 60, 383–389 (1995).
[CrossRef]

A. Weissbeck, H. Langhoff, A. Beck, “Lasing and fluorescence properties of dye-doped xerogel,” Appl. Phys. B 61, 253–255 (1995).
[CrossRef]

Appl. Phys. Lett. (3)

B. H. Soffer, B. B. McFarland, “Continuously tunable, narrow-band organic dye lasers,” Appl. Phys. Lett. 10, 266–267 (1967).
[CrossRef]

O. G. Peterson, B. B. Snavely, “Stimulated emission from flashlamp-excited organic dyes in polymethyl methacrylate,” Appl. Phys. Lett. 12, 238–240 (1968).
[CrossRef]

H-J. Brouwer, V. V. Krasnikov, A. Hilberer, J. Wildeman, G. Hadziioannou, “Novel high efficiency copolymer laser dye in the blue wavelength region,” Appl. Phys. Lett. 66, 3404–3406 (1995).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (3)

D. Larrue, J. Zarzycki, M. Canva, P. Georges, F. Bentivenga, A. Brun, “Impregnated ORMOSIL matrices for efficient solid-state optical gain media,” Opt. Commun. 110, 125–130 (1994).
[CrossRef]

A. Costela, J. M. Figuera, F. Florido, I. Garcia-Moreno, R. Sastre, “Thermal effects in optical phase conjugation in Rhodamine 6G doped copolymers of 2-hydroxyethyl methacrylate and methyl methacrylate,” Opt. Commun. 119, 265–274 (1995).
[CrossRef]

F. Amat-Guerri, A. Costela, J. M. Figurea, F. Florido, I. Garcia-Moreno, R. Sastre, “Laser action from a Rhodamine 640-doped copolymer of 2-hydroxyethyl methylmethacrylate and methyl methacrylate,” Opt. Commun. 114, 442–446 (1995).
[CrossRef]

Opt. Quantum Electron. (1)

F. J. Duarte, A. Costela, I. Garcia-Moreno, R. Sastre, J. J. Erlich, T. S. Taylor, “Dispersive solid-state dye laser oscillators,” Opt. Quantum Electron. 29, 461–472 (1997).
[CrossRef]

Sov. J. Quantum Electron. (2)

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. S. Tsaprilov, “Influence of viscoelastic properties of the matrix and of the type of plasticizer on the optical strength of transparent polymers,” Sov. J. Quantum Electron. 12, 838–840 (1982).
[CrossRef]

M. V. Bondar, O. V. Przhonskaya, E. A. Tikhonov, “Photodecomposition of dyes in a polymer matrix under lasing conditions,” Sov. J. Quantum Electron. 19, 1415–1418 (1989).
[CrossRef]

Other (2)

W. Koechner, Solid State Laser Engineering, 4th ed. (Springer-Verlag, Berlin, 1996).
[CrossRef]

G. W. C. Kaye, T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, Harlow, Essex, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout for measurement of thermal lensing in dye-doped polymers: D, dye-doped polymer disk; HR, high-reflectance mirrors; BS, beam splitters, ∼60%R at 633 nm, ∼80%R at 500 nm; L1, lens to image the aperture onto the CCD array; INT, 633-nm band pass interference filter to block pump and fluorescence light.

Fig. 2
Fig. 2

CCD image of interferometer fringes in a 4-mm aperture with a pump power of 420 mW.

Fig. 3
Fig. 3

Spectral dependence of the internal absorption coefficient of undoped polymer materials.

Fig. 4
Fig. 4

Spatial profile of the transmission of doped polymer disks: (a) three MPMMA disks with different dye concentrations, all 18 mm in diameter, 15 mm thick; (b) copolymer disks, both with a 1 × 10-4-M dye concentration, 30 mm in diameter, 8 mm thick.

Tables (2)

Tables Icon

Table 1 Thermal Lensing in PMMA and P(HEMA:MMA) Polymers

Tables Icon

Table 2 Laser Damage Thresholds of PMMA and P(HEMA:MMA) Polymers

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Tr=Tr0+Q4Kr02-r2,
δp=t Q4K r02nT=P4πKnT,
nr=nr0+δnr02r02-r2=n0+mλtr02 r2,
-1f=-n0γ sinγt,
γ=2nr21/2n0=2mλtr021/2n0.
-1f-n0γγt=-2mλr02,

Metrics