Abstract

The design of a pulsed wavemeter to monitor the high-precision tuning of pulsed (as well as cw) laser sources is presented. This device is developed from a combination of silver-coated Fabry–Perot etalons with various plate spacings. These etalons provide stepwise refinement of the wavelength to be measured. The wavemeter is controlled by a computer through a CAMAC interface, which measures the absolute wavelength in the visible with an accuracy of 2 parts in 108. The time required for data acquisition and computation to measure the refined wavelength with a single 2-MHz CPU is less than 100 ms. We describe the calibration of the instrument over the wavelength range 400–850 nm. We obtain the required calibration lines by locking lasers on hyperfine transitions of iodine, uranium, rubidium, and cesium. Methods to reduce the number of calibration lines required for calibration of the system are described. The expected wavelength-dependent phase shift of the silver coatings is compared with that measured for the etalon following calibration. The differences are larger than expected because of either optical aberations or the use of centroids to measure the fringe position.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. V. Kowalski, W. Demtroder, A. L. Schawlow, “Digital wavemeter for cw lasers,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), p. 412.
    [CrossRef]
  2. F. V. Kowalski, R. E. Teets, W. Demtröder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
    [CrossRef]
  3. E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
    [CrossRef] [PubMed]
  4. M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
    [CrossRef] [PubMed]
  5. R. L. Byer, J. Paul, M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
    [CrossRef]
  6. A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
    [CrossRef]
  7. N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
    [CrossRef]
  8. J. H. Snyder, “Compact static wavelength meter of both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959 (1978).
    [CrossRef]
  9. M. B. Morris, T. J. McIlrath, J. J. Snyder, “Fizeau wavemeter for pulsed laser wavelength measurement,” Appl. Opt. 23, 3862–3868 (1984).
    [CrossRef] [PubMed]
  10. J. L. Garner, “Wave-front curvature in a Fizeau wavemeter,” Opt. Lett. 8, 91–93 (1983); “Compact Fizeau wavemeter,” Appl. Opt. 24, 3570–3573 (1985).
    [CrossRef] [PubMed]
  11. D. F. Gray, K. A. Smith, F. B. Dunning, “Simple compact Fizeau wavemeter,” Appl. Opt. 25, 1339–1343 (1986).
    [CrossRef] [PubMed]
  12. B. Faust, L. Klynning, “Low-cost wavemeter with a solid Fizeau interferometer and fiber-optic input,” Appl. Opt. 30, 5254–5259 (1991).
    [CrossRef] [PubMed]
  13. J. Kielkopf, L. Portaro, “Loyd’s mirror as a laser wavemeter,” Appl. Opt. 31, 7083–7088 (1992).
    [CrossRef] [PubMed]
  14. T. E. Dimmick, “Simple and accurate wavemeter implemented with a polarization interferometer,” Appl. Opt. 36, 9396–9401 (1997).
    [CrossRef]
  15. C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
    [CrossRef]
  16. W. Lichten, “Precise wavelength measurements and optical phase shifts. I. General theory,” J. Opt. Soc. Am. A 2, 1869–1876 (1985); “Precise wavelength measurements and optical phase shifts. II. Applications,” J. Opt. Soc. Am. A 3, 909–915 (1986).
    [CrossRef]
  17. K. W. Meissner, “Interference spectroscopy. I,” J. Opt. Soc. Am. 31, 405–427 (1941).
    [CrossRef]
  18. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 330.
  19. O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955; 2nd ed., Dover, New York, 1991), pp. 55–88.
  20. J. M. Bennett, “Precise method for measuring the absolute phase change on reflection,” J. Opt. Soc. Am. 54, 612–624 (1964).
    [CrossRef]
  21. V. J. Bauer, “Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten,” Ann. Phys. (Leipzig) 20, 481–501 (1934).
    [CrossRef]
  22. Ref. 19, pp. 71–75.
  23. M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), pp. 295–300.
  24. mathematica, a software program for mathematics, is available from Wolfram Research, Inc., Champagne, Illinois.
  25. Ref. 19, pp. 166–176.
  26. D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–357.
  27. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
    [CrossRef]
  28. Melles Griot, Optics Guide 5 (Melles Griot, Inc., Irvine, Calif., 1990), pp. 3–6.
  29. M. D. Levenson, S. S. Kano, Introduction to Non-Linear Laser Spectroscopy (Academic, San Diego, Calif., 1988).
  30. H. P. Layer, “A portable iodine stabilized helium-neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
    [CrossRef]
  31. We the help of Howard Layer, who contributed greatly to our construction of a copy of his laser.
  32. G. R. Hanes, K. M. Baird, J. DeRemigis, “Stability, reproducibility and absolute wavelength of a 633-nm He–Ne laser stabilized to an iodine hyperfine component,” Appl. Opt. 12, 1600–1605 (1973).
    [CrossRef] [PubMed]
  33. G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
    [CrossRef]
  34. C. E. Tanner, C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
    [CrossRef] [PubMed]
  35. G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
    [CrossRef]
  36. B. A. Palmer, R. A. Keller, R. Engleman, “An atlas of uranium emission intensities in a hollow cathod discharge,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., July1980).
  37. C. J. Sansonetti, K. H. Weber, “Reference lines for dye-laser wave-number calibration in the optogalvanic spectra of uranium and thorium,” J. Opt. Soc. Am. B 1, 361–365 (1984).
    [CrossRef]
  38. B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, “Accurate wave-number measurements of uranium spectral lines,” J. Opt. Soc. Am. 71, 948–952 (1981).
    [CrossRef]
  39. D. S. King, P. K. Schenck, K. C. Smyth, J. C. Travis, “Direct calibration of laser wavelength and bandwidth using the optogalvanic effect in hollow cathode lamps,” Appl. Opt. 16, 2617–2619 (1977).
    [CrossRef] [PubMed]
  40. W. R. Bennett, Atomic Gas Laser Transition Data: A Critical Evaluation (IFI/Plenum, New York, 1979), pp. 18–20.
  41. J. P. Boquillon, “High resolution coherant anti-Stokes Raman spectroscopy (CARS) of oxygen and carbon dioxide,” in Pulsed-Signal Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 160–170 (1988).
    [CrossRef]
  42. R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
    [CrossRef]
  43. J. Kuo, I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).
    [CrossRef]

1997

1992

J. Kielkopf, L. Portaro, “Loyd’s mirror as a laser wavemeter,” Appl. Opt. 31, 7083–7088 (1992).
[CrossRef] [PubMed]

M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
[CrossRef] [PubMed]

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

1991

J. Kuo, I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).
[CrossRef]

G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

B. Faust, L. Klynning, “Low-cost wavemeter with a solid Fizeau interferometer and fiber-optic input,” Appl. Opt. 30, 5254–5259 (1991).
[CrossRef] [PubMed]

1988

C. E. Tanner, C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
[CrossRef] [PubMed]

1986

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

D. F. Gray, K. A. Smith, F. B. Dunning, “Simple compact Fizeau wavemeter,” Appl. Opt. 25, 1339–1343 (1986).
[CrossRef] [PubMed]

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

1985

1984

1983

1981

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, “Accurate wave-number measurements of uranium spectral lines,” J. Opt. Soc. Am. 71, 948–952 (1981).
[CrossRef]

1980

H. P. Layer, “A portable iodine stabilized helium-neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
[CrossRef]

1978

J. H. Snyder, “Compact static wavelength meter of both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959 (1978).
[CrossRef]

F. V. Kowalski, R. E. Teets, W. Demtröder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
[CrossRef]

1977

1976

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

1973

1964

1941

1934

V. J. Bauer, “Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten,” Ann. Phys. (Leipzig) 20, 481–501 (1934).
[CrossRef]

Akamatsu, I.

J. Kuo, I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).
[CrossRef]

Avila, G.

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

Baird, K. M.

Barwood, G. P.

G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Bauer, V. J.

V. J. Bauer, “Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten,” Ann. Phys. (Leipzig) 20, 481–501 (1934).
[CrossRef]

Beausoleil, R. G.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Bennett, J. M.

Bennett, W. R.

W. R. Bennett, Atomic Gas Laser Transition Data: A Critical Evaluation (IFI/Plenum, New York, 1979), pp. 18–20.

Boesl, U.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Boquillon, J. P.

J. P. Boquillon, “High resolution coherant anti-Stokes Raman spectroscopy (CARS) of oxygen and carbon dioxide,” in Pulsed-Signal Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 160–170 (1988).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 330.

Boyd, T. L.

C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
[CrossRef]

Byer, R. L.

R. L. Byer, J. Paul, M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
[CrossRef]

Cerez, P.

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

Chu, S.

M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
[CrossRef] [PubMed]

Danzmann, K.

M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
[CrossRef] [PubMed]

de Clercq, E.

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

Demtroder, W.

F. V. Kowalski, W. Demtroder, A. L. Schawlow, “Digital wavemeter for cw lasers,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), p. 412.
[CrossRef]

Demtröder, W.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

F. V. Kowalski, R. E. Teets, W. Demtröder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
[CrossRef]

DeRemigis, J.

Dimmick, T. E.

Duncan, M. D.

R. L. Byer, J. Paul, M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
[CrossRef]

Dunning, F. B.

Engleman, R.

B. A. Palmer, R. A. Keller, R. Engleman, “An atlas of uranium emission intensities in a hollow cathod discharge,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., July1980).

Faust, B.

Fee, M. S.

M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
[CrossRef] [PubMed]

Fischer, A.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Furtak, T. E.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), pp. 295–300.

Gain, P.

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

Garner, J. L.

Gill, P.

G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Gray, D. F.

Griot, Melles

Melles Griot, Optics Guide 5 (Melles Griot, Inc., Irvine, Calif., 1990), pp. 3–6.

Hall, J. L.

Hanes, G. R.

Hänsch, T. W.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Heavens, O. S.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955; 2nd ed., Dover, New York, 1991), pp. 55–88.

Hildum, E. A.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Hunter, W. R.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–357.

Kano, S. S.

M. D. Levenson, S. S. Kano, Introduction to Non-Linear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Kasuya, T.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Kato, H.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Keller, R. A.

B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, “Accurate wave-number measurements of uranium spectral lines,” J. Opt. Soc. Am. 71, 948–952 (1981).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An atlas of uranium emission intensities in a hollow cathod discharge,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., July1980).

Keto, J. W.

C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
[CrossRef]

Kielkopf, J.

King, D. S.

Klein, M. V.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), pp. 295–300.

Klynning, L.

Konishi, N.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Kowalski, F. V.

Kullmer, R.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

Kuo, J.

J. Kuo, I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).
[CrossRef]

Layer, H. P.

H. P. Layer, “A portable iodine stabilized helium-neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
[CrossRef]

Lengkeek, H. P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

Levenson, M. D.

M. D. Levenson, S. S. Kano, Introduction to Non-Linear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Lichten, W.

Lynch, D. W.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–357.

McIlrath, T. J.

McIntyre, D. M.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Meissner, K. W.

Michie, R. B.

C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
[CrossRef]

Morris, M. B.

Neusser, H. J.

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

Palmer, B. A.

B. A. Palmer, R. A. Keller, F. V. Kowalski, J. L. Hall, “Accurate wave-number measurements of uranium spectral lines,” J. Opt. Soc. Am. 71, 948–952 (1981).
[CrossRef]

B. A. Palmer, R. A. Keller, R. Engleman, “An atlas of uranium emission intensities in a hollow cathod discharge,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., July1980).

Paul, J.

R. L. Byer, J. Paul, M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
[CrossRef]

Portaro, L.

Riedle, E.

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

Rowley, W. R.

G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

Sansonetti, C. J.

Schawlow, A. L.

F. V. Kowalski, R. E. Teets, W. Demtröder, A. L. Schawlow, “An improved wavemeter for cw lasers,” J. Opt. Soc. Am. 68, 1611–1613 (1978).
[CrossRef]

F. V. Kowalski, W. Demtroder, A. L. Schawlow, “Digital wavemeter for cw lasers,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), p. 412.
[CrossRef]

Schenck, P. K.

Smith, K. A.

Smyth, K. C.

Snyder, J. H.

J. H. Snyder, “Compact static wavelength meter of both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959 (1978).
[CrossRef]

Snyder, J. J.

Sussmann, R.

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

Suzuki, T.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Taira, Y.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Tanner, C. E.

C. E. Tanner, C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
[CrossRef] [PubMed]

Teets, R. E.

Travis, J. C.

van Kampen, F. F.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

van Went, C. G.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

Weber, K. H.

Weber, Th.

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

White, C. J.

C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
[CrossRef]

Wieman, C. E.

C. E. Tanner, C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
[CrossRef] [PubMed]

Winsemius, P.

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 330.

Ann. Phys. (Leipzig)

V. J. Bauer, “Die Dispersion des Phasensprungs bei der Lichtreflexion an dünnen Metallschichten,” Ann. Phys. (Leipzig) 20, 481–501 (1934).
[CrossRef]

Appl. Opt.

Appl. Phys.

N. Konishi, T. Suzuki, Y. Taira, H. Kato, T. Kasuya, “High precision wavelength meter with Fabry–Perot optics,” Appl. Phys. 25, 311–316 (1981).
[CrossRef]

Appl. Phys. B

G. P. Barwood, P. Gill, W. R. Rowley, “Frequency measurements on optically narrowed Rb-stabilized laser diodes at 780 nm and 795 nm,” Appl. Phys. B 53, 142–147 (1991).
[CrossRef]

IEEE Trans. Instrum. Meas.

H. P. Layer, “A portable iodine stabilized helium-neon laser,” IEEE Trans. Instrum. Meas. IM-29, 358–361 (1980).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Phys. F

P. Winsemius, F. F. van Kampen, H. P. Lengkeek, C. G. van Went, “Temperature dependence of the optical properties of Au, Ag, and Cu,” J. Phys. F 6, 1583–1606 (1976).
[CrossRef]

Meas. Sci. Technol.

J. Kuo, I. Akamatsu, “A simple real-time wavemeter for pulsed lasers,” Meas. Sci. Technol. 2, 54–58 (1991).
[CrossRef]

Metrologia

G. Avila, P. Gain, E. de Clercq, P. Cerez, “New absolute wavenumber measurement of the D2 line of cesium,” Metrologia 22, 111–114 (1986).
[CrossRef]

Opt. Commun.

A. Fischer, R. Kullmer, W. Demtröder, “Computer controlled Fabry–Perot wavemeter,” Opt. Commun. 39, 277–282 (1981).
[CrossRef]

R. Sussmann, Th. Weber, E. Riedle, H. J. Neusser, “Frequency shifting of pulsed narrow-band laser light in a multipass Raman cell,” Opt. Commun. 88, 408–414 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. S. Fee, K. Danzmann, S. Chu, “Optical heterodyne measurement of pulsed lasers: toward high-precision pulsed spectroscopy,” Phys. Rev. A 45, 4911–4924 (1992).
[CrossRef] [PubMed]

C. E. Tanner, C. E. Wieman, “Precision measurement of the hyperfine structure of the 133Cs 6P3/2 state,” Phys. Rev. A 38, 1616–1617 (1988).
[CrossRef] [PubMed]

Phys. Rev. Lett.

E. A. Hildum, U. Boesl, D. M. McIntyre, R. G. Beausoleil, T. W. Hänsch, “Measurement of the 1S–2S frequency in atomic hydrogen,” Phys. Rev. Lett. 56, 576–579 (1986).
[CrossRef] [PubMed]

Sov. J. Quantum Electron.

J. H. Snyder, “Compact static wavelength meter of both pulsed and cw lasers,” Sov. J. Quantum Electron. 8, 959 (1978).
[CrossRef]

Other

F. V. Kowalski, W. Demtroder, A. L. Schawlow, “Digital wavemeter for cw lasers,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), p. 412.
[CrossRef]

R. L. Byer, J. Paul, M. D. Duncan, “A wavelength meter,” in Laser Spectroscopy III, J. L. Hall, J. L. Carlsten, eds. (Springer-Verlag, Berlin, 1977), pp. 414–416.
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1964), p. 330.

O. S. Heavens, Optical Properties of Thin Solid Films (Butterworth, London, 1955; 2nd ed., Dover, New York, 1991), pp. 55–88.

C. J. White, T. L. Boyd, R. B. Michie, J. W. Keto, “Precision pulsed UV Wavemeter,” in Pulsed Single-Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 234–236 (1988).
[CrossRef]

We the help of Howard Layer, who contributed greatly to our construction of a copy of his laser.

B. A. Palmer, R. A. Keller, R. Engleman, “An atlas of uranium emission intensities in a hollow cathod discharge,” (Los Alamos Scientific Laboratory, Los Alamos, N.M., July1980).

Melles Griot, Optics Guide 5 (Melles Griot, Inc., Irvine, Calif., 1990), pp. 3–6.

M. D. Levenson, S. S. Kano, Introduction to Non-Linear Laser Spectroscopy (Academic, San Diego, Calif., 1988).

Ref. 19, pp. 71–75.

M. V. Klein, T. E. Furtak, Optics (Wiley, New York, 1986), pp. 295–300.

mathematica, a software program for mathematics, is available from Wolfram Research, Inc., Champagne, Illinois.

Ref. 19, pp. 166–176.

D. W. Lynch, W. R. Hunter, in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, Orlando, Fla., 1985), pp. 350–357.

W. R. Bennett, Atomic Gas Laser Transition Data: A Critical Evaluation (IFI/Plenum, New York, 1979), pp. 18–20.

J. P. Boquillon, “High resolution coherant anti-Stokes Raman spectroscopy (CARS) of oxygen and carbon dioxide,” in Pulsed-Signal Frequency Lasers: Technology and Applications, W. K. Bischel, L. A. Rahn, eds., Proc. SPIE912, 160–170 (1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a Fabry–Perot etalon: d, plate separations; t, thickness of metal coating. (b) Multiple interference in the metal coatings. The metal coatings have an index of refraction n 1 - ik 1, and the quartz plates have index n 2. The plates are vacuum spaced.

Fig. 2
Fig. 2

Comparison of calculated thickness of the metal coatings (solid curve) with that measured by Bennett.20 For the wavelength range from 450 to 550 nm the curves are parallel but displaced by ∼18 nm; for wavelengths greater than 550 the curves diverge.

Fig. 3
Fig. 3

Schematic diagram of the wavemeter. All the imaging lenses after the etalons are achromats. M’s, mirrors; L’s, lenses, other abbreviations are defined in text.

Fig. 4
Fig. 4

Positioning of the etalon fringes on the diode arrays.

Fig. 5
Fig. 5

Calibrated plate separation for etalon 1 as a function of wavelength. The change in plate separation greatly exceeds that expected from the metal coatings and is likely caused by chromatic aberration in the optics resulting from the large angles subtended by the rings for the small (100-µm) plate separation.

Fig. 6
Fig. 6

Calibrated change in plate separation relative to the separation at the red helium–neon wavelength for the etalon 2, spaced by 2.5 mm. Error bars, uncertainties in the fractional fringe order and known wavelengths of the reference sources; solid curve, expected variation from theory. The reproducibility of the measurements is consistent with the error bars; hence the disagreement with theory represents a systematic error that is due to the method used for measuring the fringe or to optical abberations.

Tables (3)

Tables Icon

Table 1 Wavelength Dependence of Materials in the Form C0 + C1 × X + … + C9 × X9 a

Tables Icon

Table 2 Reference Lines Used for Calibration

Tables Icon

Table 3 Section of Iteration Table for Etalon 1

Equations (40)

Equations on this page are rendered with MathJax. Learn more.

2d=m+ελ,
Dp2=msp+ε,  p=0, 1, 2,,
ε=interceptslope.
λ=2dm+ε,
m=round2dλi-ε.
|Δm|=Δ2dλ+ΔλiFSR+Δε<0.5,
Δλimax<FSR/2.
N+1+ελ=2n0d+π-βλ/π.
δ=-tan-1ρ-1/2 exp4πtk1λ-ρ1/2 exp-4πtk1λsinϑ1-ϑ2-R-1/2-R1/2sinψ1-ψ2+4πtn1λρ-1/2 exp4πtk1λ+ρ1/2 exp-4πtk1λcosϑ1-ϑ2-R-1/2+R1/2cosψ1-ψ2+4πtn1λ,
ϑ1tan-1-k1n1+1,  ϑ2tan-1-k1n1-1,
ψ1tan-1-k1n1+n2, ψ2tan-1-k1n1-n2,
ρn1-n22+k12n1+n22+k12,
Rn1-12+k12n1+12+k12,
Ĩ01=1τ011ρ01ρ011,  Ĩ12=1τ121ρ12ρ121,
τij=2ni-ikini-iki+nj-ikj, ρij=ni-iki-nj-ikjni-iki+nj-ikj.
L˜12=expi2πn1-ik1t/λ00exp-i2πn1-ik1t/λ.
S˜02=Ĩ01L˜12Ĩ12.
R02=S21/S11.
β=ArgR02.
CC0-CC1<DIFFMAX,
CC0=CentroidCleft+CentroidCright/2, CC1=CentroidCleft-1+CentroidCright+1/2,
CC=CC0+CC1/2.
CCp-CC<DIFFMAX,
CCp=CentroidCleft-1-p-1+CentroidCright+1+p+1/2
Dp=CentroidCright+p-CentroidCleft-p
m+ελ=2d-2s0-dsdλλ-λ0
m0+ε0λ0=2d0
m1+ε1λ1=2d0,
2d0=Δm+Δε1λ0-1λ1,
m0=Round2d0/λ0-ε0.
λ1λ0=m0+Δm+ε1m0+ε0.
2ditrial=m1app+±i+ε1λ1, i=0, 1, 2, 3,,
mk=2titrialλk-εk.
νR=|νpump-νprobe|.
νprobe1-νprobe2=νR2-νR1.
1-ε1FSR+NFSR+ε2FSR=νR2-νR1.
FSR=νR2-νR1ε2-ε1+N+1.
νR=1388.1775-0.7110×10-2P,
mk=Round2ditrialλk-εk,
1λn=1λ2nd Stokes+nνR,

Metrics