Abstract

A technique for acquiring two-dimensional soot-volume-fraction measurements in laminar flames has been demonstrated. The technique provides a map of very low noise concentration over a range of wavelengths (250–1100 nm). A noise level of 0.0007 in extinction and a spatial resolution of 30–40 µm for soot concentration were achieved with an arc lamp source that was filtered to provide greater spatial coherence and a CCD detector. The broadband arc lamp source also allowed us to avoid the added noise resulting from speckle with coherent laser sources. Beam steering, due to refractive-index gradients in the flame, was measured and compared with theoretical predictions. The optical arrangement to minimize the effect of beam steering is described. As a result the beam steering had no effect on the soot measurements in the flames examined. Flame-transmission maps obtained with this system in an ethylene/air laminar diffusion flame are presented. Tomographic analysis from use of an Abel inversion of the line-of-sight data to obtain radial profiles of soot concentration is described.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. E. Bockhorn, Soot Formation in Combustion (Mechanisms and Models) (Springer-Verlag, New York, 1994).
    [CrossRef]
  2. G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
    [CrossRef]
  3. R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Proceedings of the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.
  4. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).
  5. C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in Proceedings of the 20th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.
  6. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  7. B. S. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  8. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  9. S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef] [PubMed]
  10. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LH imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
    [CrossRef]
  11. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  12. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  13. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [CrossRef] [PubMed]
  14. P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
    [CrossRef]
  15. Ö. L. Gülder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames,” Combust. Flame 92, 115–124 (1993).
    [CrossRef]
  16. F. J. Weinberg, Optics of Flames (Butterworths, London, 1963).
  17. Ö. L. Gülder, D. R. Snelling, R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2351–2357.
    [CrossRef]
  18. D. R. Lide, ed., CRC Handbook of Physics and Chemistry, 72nd ed. (CRC Press, Boca Raton, Fla., 1991).
  19. W. L. Howes, D. R. Buchelle, “Optical interferometry of inhomogeneous gases,” J. Opt. Soc. Am. 56, 1517–1528 (1966).
    [CrossRef]
  20. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [CrossRef] [PubMed]
  21. W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
    [CrossRef]
  22. F. G. Roper, “The prediction of laminar diffusion flame sizes: Part 1. Theoretical model,” Combust. Flame 29, 219–226 (1977).
    [CrossRef]

1997 (3)

1996 (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

1995 (2)

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

1994 (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

1993 (2)

Ö. L. Gülder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LH imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

1992 (1)

1984 (1)

1977 (1)

F. G. Roper, “The prediction of laminar diffusion flame sizes: Part 1. Theoretical model,” Combust. Flame 29, 219–226 (1977).
[CrossRef]

1969 (1)

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

1966 (1)

Bockhorn, H. E.

H. E. Bockhorn, Soot Formation in Combustion (Mechanisms and Models) (Springer-Verlag, New York, 1994).
[CrossRef]

Buchelle, D. R.

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Dalzell, W. H.

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Dasch, C. J.

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
[CrossRef] [PubMed]

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in Proceedings of the 20th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.

Dobbins, R. A.

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Proceedings of the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

Faeth, G. M.

G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

Greenberg, P. S.

P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
[CrossRef] [PubMed]

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LH imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Gülder, Ö. L.

Ö. L. Gülder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

Ö. L. Gülder, D. R. Snelling, R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2351–2357.
[CrossRef]

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

Howes, W. L.

Köylü, Ü. Ö.

G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

Ku, J. C.

P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
[CrossRef] [PubMed]

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

Leipertz, A.

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Melton, L. A.

Mewes, B. S.

Roper, F. G.

F. G. Roper, “The prediction of laminar diffusion flame sizes: Part 1. Theoretical model,” Combust. Flame 29, 219–226 (1977).
[CrossRef]

Santoro, R. J.

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Proceedings of the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

Sarofim, A. F.

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

Sawchuk, R. A.

Ö. L. Gülder, D. R. Snelling, R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2351–2357.
[CrossRef]

Schraml, S.

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Seitzman, J. M.

Semerjian, H. G.

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Proceedings of the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

Snelling, D. R.

Ö. L. Gülder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

Ö. L. Gülder, D. R. Snelling, R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2351–2357.
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LH imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Weinberg, F. J.

F. J. Weinberg, Optics of Flames (Butterworths, London, 1963).

Will, S.

S. Will, S. Schraml, A. Leipertz, “Two-dimensional soot-particle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef] [PubMed]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Aerosol Sci. Technol. (1)

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incandescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: Development and characterization towards a measurement of soot-volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Ber. Bunsenges. Phys. Chem. (1)

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LH imaging of soot,” Ber. Bunsenges. Phys. Chem. 97, 1619–1625 (1993).
[CrossRef]

Combust. Flame (3)

P. S. Greenberg, J. C. Ku, “Soot volume fractions in normal and reduced gravity laminar acetylene diffusion flames,” Combust. Flame 108, 227–230 (1997).
[CrossRef]

Ö. L. Gülder, D. R. Snelling, “Influence of nitrogen dilution and flame temperature on soot formation in diffusion flames,” Combust. Flame 92, 115–124 (1993).
[CrossRef]

F. G. Roper, “The prediction of laminar diffusion flame sizes: Part 1. Theoretical model,” Combust. Flame 29, 219–226 (1977).
[CrossRef]

Combust. Sci. Technol. (1)

G. M. Faeth, Ü. Ö. Köylü, “Soot morphology and optical properties in nonpremixed turbulent flame environments,” Combust. Sci. Technol. 108, 207–229 (1995).
[CrossRef]

J. Heat Transfer (1)

W. H. Dalzell, A. F. Sarofim, “Optical constants of soot and their application to heat flux calculations,” J. Heat Transfer 91, 100–104 (1969).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Lett. (1)

Other (8)

R. A. Dobbins, R. J. Santoro, H. G. Semerjian, “Analysis of light scattering from soot using optical cross sections for aggregates,” in Proceedings of the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1990), pp. 1525–1532.

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE Paper 930079 (Society of Automotive Engineers, Warrendale, Pa., 1993).

C. J. Dasch, “New soot diagnostics in flames based on laser vaporization of soot,” in Proceedings of the 20th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1984), pp. 1231–1237.

H. E. Bockhorn, Soot Formation in Combustion (Mechanisms and Models) (Springer-Verlag, New York, 1994).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

F. J. Weinberg, Optics of Flames (Butterworths, London, 1963).

Ö. L. Gülder, D. R. Snelling, R. A. Sawchuk, “Influence of hydrogen addition to fuel on temperature field and soot formation in diffusion flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2351–2357.
[CrossRef]

D. R. Lide, ed., CRC Handbook of Physics and Chemistry, 72nd ed. (CRC Press, Boca Raton, Fla., 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the laminar diffusion flame assembly.

Fig. 2
Fig. 2

Experimental observations (symbols) and theoretical predictions (curves) of beam steering in laminar diffusion flame.

Fig. 3
Fig. 3

Theoretical beam steering and CARS temperature profiles in laminar diffusion flame.

Fig. 4
Fig. 4

Optical layout for 2-D soot-transmission measurements.

Fig. 5
Fig. 5

Image of sooting flame ratioed to the reference image recorded in the absence of the flame.

Fig. 6
Fig. 6

Three strips of the transmittance of a C2H4/air diffusion flame taken from a 2-D image showing the original data and the MathCad loess smooth of the data.

Fig. 7
Fig. 7

Abel inversion of the transmittance curves of Fig. 6 showing the soot volume fraction determined from the right- and left-hand side of the image and a smoothed fit of both data sets.

Fig. 8
Fig. 8

Abel inversion of the transmittance curves taken in the region of moderate soot concentration of the C2H4/air diffusion flame showing the soot volume fraction determined from the right- and left-hand side of the image and a smoothed fit (broken lines) of both data sets.

Fig. 9
Fig. 9

Three-dimensional map of soot concentration in the C2H4/air diffusion flame showing (a) a complete flame data set and (b) the difference between data sets taken on different days.

Tables (1)

Tables Icon

Table 1 Statistics of Noise-Free and Noisy Regionsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θr=-0z1nnrz-0zδr z,
fv=lnτλ6πLEm,
d lnτdrλ6πLEm=fvr.

Metrics