Abstract

An optical fiber power-delivery system has been developed. An analysis of the spectral response of every component in the system has been carried out. Experimental measurements of the system are presented. We obtained 205 mW of power (5.4 V, 38.3 mA), yielding 27.4% efficiency. As an application, a sensor module is optically powered. This is an electrically isolated system, inasmuch as it also sends the measured data through a fiber. Several other applications are envisaged in the fields of aerospace, avionics, and domotics.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.
  2. B. Spillman, D. H. Crowne, “Optically powered and interrogated rotary position sensor for aircraft engine control applications,” Opt. Laser Eng. 16, 105–118 (1992).
    [CrossRef]
  3. R. C. Miller, R. B. Lawry, “Optically powered speech communication over a fiber lightguide,” Bell Syst. Tech. J. 58, 1735–1741 (1979).
    [CrossRef]
  4. M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
    [CrossRef]
  5. B. Culshaw, J. Dakin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1997), Vols. 3 and 4.
  6. P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
    [CrossRef]
  7. I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
    [CrossRef]
  8. Home and Buildings Electronic Systems, Brussels, Belgium, in-process European Standard 50090 (CENELEC).
  9. C. Algora, V. Díaz, “Performance and optimization of monochromatic p/n heteroface AlgaAs/GaAs photovoltaic cells,” Solid State Electron. 41, 1787–1793 (1997).
    [CrossRef]
  10. C. Algora, V. Díaz, “Design and optimization of very high power density monochromatic GaAs photovoltaic cells,” IEEE Trans. Electron. Dev. 45, 2047–2054 (1998).
    [CrossRef]
  11. R. Peña, C. Algora, “Monolithically connected solar cell and infrared emitting diode for two-directional optical power and data transmission,” in Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion (European Commission, Luxembourg, 1998), pp. 3691–3694.

1998

C. Algora, V. Díaz, “Design and optimization of very high power density monochromatic GaAs photovoltaic cells,” IEEE Trans. Electron. Dev. 45, 2047–2054 (1998).
[CrossRef]

1997

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

C. Algora, V. Díaz, “Performance and optimization of monochromatic p/n heteroface AlgaAs/GaAs photovoltaic cells,” Solid State Electron. 41, 1787–1793 (1997).
[CrossRef]

1996

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

1992

B. Spillman, D. H. Crowne, “Optically powered and interrogated rotary position sensor for aircraft engine control applications,” Opt. Laser Eng. 16, 105–118 (1992).
[CrossRef]

1990

M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
[CrossRef]

1979

R. C. Miller, R. B. Lawry, “Optically powered speech communication over a fiber lightguide,” Bell Syst. Tech. J. 58, 1735–1741 (1979).
[CrossRef]

Algora, C.

C. Algora, V. Díaz, “Design and optimization of very high power density monochromatic GaAs photovoltaic cells,” IEEE Trans. Electron. Dev. 45, 2047–2054 (1998).
[CrossRef]

C. Algora, V. Díaz, “Performance and optimization of monochromatic p/n heteroface AlgaAs/GaAs photovoltaic cells,” Solid State Electron. 41, 1787–1793 (1997).
[CrossRef]

R. Peña, C. Algora, “Monolithically connected solar cell and infrared emitting diode for two-directional optical power and data transmission,” in Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion (European Commission, Luxembourg, 1998), pp. 3691–3694.

Aramburu, C.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Bakas, A.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Beaumont, B.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

Crowne, D. H.

B. Spillman, D. H. Crowne, “Optically powered and interrogated rotary position sensor for aircraft engine control applications,” Opt. Laser Eng. 16, 105–118 (1992).
[CrossRef]

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1997), Vols. 3 and 4.

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1997), Vols. 3 and 4.

Datta, P.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Díaz, V.

C. Algora, V. Díaz, “Design and optimization of very high power density monochromatic GaAs photovoltaic cells,” IEEE Trans. Electron. Dev. 45, 2047–2054 (1998).
[CrossRef]

C. Algora, V. Díaz, “Performance and optimization of monochromatic p/n heteroface AlgaAs/GaAs photovoltaic cells,” Solid State Electron. 41, 1787–1793 (1997).
[CrossRef]

Fiksman, G.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

Guilluame, J.-C.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

Landry, M. J.

M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
[CrossRef]

Lawry, R. B.

R. C. Miller, R. B. Lawry, “Optically powered speech communication over a fiber lightguide,” Bell Syst. Tech. J. 58, 1735–1741 (1979).
[CrossRef]

López-Amo, M.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Matías, I. R.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Miller, R. C.

R. C. Miller, R. B. Lawry, “Optically powered speech communication over a fiber lightguide,” Bell Syst. Tech. J. 58, 1735–1741 (1979).
[CrossRef]

Mittas, A.

M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
[CrossRef]

Otón, J. M.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Peña, R.

R. Peña, C. Algora, “Monolithically connected solar cell and infrared emitting diode for two-directional optical power and data transmission,” in Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion (European Commission, Luxembourg, 1998), pp. 3691–3694.

Rupert, J. W.

M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
[CrossRef]

Salètes, A.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

Spillman, B.

B. Spillman, D. H. Crowne, “Optically powered and interrogated rotary position sensor for aircraft engine control applications,” Opt. Laser Eng. 16, 105–118 (1992).
[CrossRef]

Verié, C.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

Vilela, M. F.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

Bell Syst. Tech. J.

R. C. Miller, R. B. Lawry, “Optically powered speech communication over a fiber lightguide,” Bell Syst. Tech. J. 58, 1735–1741 (1979).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

I. R. Matías, G. Fiksman, P. Datta, M. López-Amo, J. M. Otón, “Optical intensity induced shutter in photochromic doped sol-gel gel-glass waveguides,” IEEE J. Sel. Top. Quantum Electron. 3, 780–788 (1997).
[CrossRef]

IEEE Trans. Electron. Dev.

C. Algora, V. Díaz, “Design and optimization of very high power density monochromatic GaAs photovoltaic cells,” IEEE Trans. Electron. Dev. 45, 2047–2054 (1998).
[CrossRef]

Microwave Opt. Technol. Lett.

P. Datta, I. R. Matías, C. Aramburu, A. Bakas, J. M. Otón, M. López-Amo, “Tapered optical-fiber temperature sensor,” Microwave Opt. Technol. Lett. 11, 93–95 (1996).
[CrossRef]

Opt. Laser Eng.

B. Spillman, D. H. Crowne, “Optically powered and interrogated rotary position sensor for aircraft engine control applications,” Opt. Laser Eng. 16, 105–118 (1992).
[CrossRef]

Sol. Cells

M. J. Landry, J. W. Rupert, A. Mittas, “Photovoltaic array GaAs cells response driven by high power laser diodes,” Sol. Cells 29, 283–301 (1990).
[CrossRef]

Solid State Electron.

C. Algora, V. Díaz, “Performance and optimization of monochromatic p/n heteroface AlgaAs/GaAs photovoltaic cells,” Solid State Electron. 41, 1787–1793 (1997).
[CrossRef]

Other

Home and Buildings Electronic Systems, Brussels, Belgium, in-process European Standard 50090 (CENELEC).

B. Culshaw, J. Dakin, Optical Fiber Sensors (Artech House, Norwood, Mass., 1997), Vols. 3 and 4.

B. Beaumont, J.-C. Guilluame, M. F. Vilela, A. Salètes, C. Verié, “High efficiency conversion of laser energy and its application to optical power transmission,” in Proceedings of the Twenty-Second IEEE Photovoltaics Specialists Conference (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1991), pp. 1503–1507.

R. Peña, C. Algora, “Monolithically connected solar cell and infrared emitting diode for two-directional optical power and data transmission,” in Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion (European Commission, Luxembourg, 1998), pp. 3691–3694.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of a power-by-light system. The PV converter provides all the required electric power. The sensor unit measures a parameter and sends its data to the control unit through the optical fiber by means of the infrared-emitting diode (IRED).

Fig. 2
Fig. 2

Optical fiber attenuation, laser emission spectrum (ES), and PV converter external quantum efficiency (QE) as a function of wavelength.

Fig. 3
Fig. 3

Schematic of the power-by-light system. The data defined by the upper numbers signify power efficiency, and the lower ones define the equivalent power losses.

Fig. 4
Fig. 4

Current-to-voltage curves for both the power system (dark dashed curve) and the UPNABus sensor system (light dashed curve). The power-to-voltage curve (solid curve) of the power system is also shown.

Fig. 5
Fig. 5

Performance of the whole system.

Metrics