Abstract

A hollow fiber composed of a glass capillary tube and a metal thin film upon the inside of the tube is proposed for the delivery of ArF-excimer laser light. From theoretical analysis, aluminum is chosen as the metal layer. A thin aluminum film is deposited by metallorganic chemical-vapor deposition, with dimethylethylamine alane employed as the source material. Measured loss spectra in vacuum-ultraviolet and ultraviolet regions and losses for ArF-excimer laser light show the low-loss property of the aluminum-coated fiber at the 193-nm wavelength of ArF-excimer laser light. The straight loss of the 1-m long, 1-mm-bore fiber is 1.0 dB.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
    [CrossRef] [PubMed]
  2. R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
    [CrossRef]
  3. P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
    [CrossRef]
  4. K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).
  5. T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
    [CrossRef]
  6. K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).
  7. Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
    [CrossRef]
  8. Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer laser light,” Opt. Lett. 23, 1226–1228 (1998).
    [CrossRef]
  9. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
    [CrossRef]
  10. H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
    [CrossRef]
  11. E. Garmire, T. McMahon, M. Bass, “Propagation of IR light in flexible hollow waveguides: further discussion,” Appl. Opt. 15, 3037–3039 (1976).
    [CrossRef] [PubMed]
  12. M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
    [CrossRef]
  13. M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
    [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).
  15. E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, New York, 1991).
  16. T. Kodas, M. Hampden-Smith, eds., The Chemistry of Metal CVD (VCH, Weinheim, Germany, 1994).
    [CrossRef]
  17. M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).
  18. W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
    [CrossRef]
  19. T. Abel, J. Hirsch, J. A. Harrington, “Hollow glass waveguides for broadband infrared transmission,” Opt. Lett. 19, 1034–1036 (1994).
    [CrossRef] [PubMed]
  20. M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
    [CrossRef]
  21. Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hllow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
    [CrossRef]
  22. H. E. Bennett, “Specular reflectance of aluminized ground glass and the height distribution of surface irregularities,” J. Opt. Soc. Am. 53, 1389–1394 (1963).
    [CrossRef]

1998 (1)

1997 (1)

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

1995 (1)

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

1994 (1)

1991 (1)

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

1989 (3)

W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hllow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
[CrossRef]

1988 (1)

1984 (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

1983 (1)

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
[CrossRef]

1976 (1)

1974 (1)

H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
[CrossRef]

1964 (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
[CrossRef]

1963 (1)

Abe, S.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Abel, T.

Aizawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Bass, M.

Bennett, H. E.

Boyd, D. C.

W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
[CrossRef]

Brimacombe, R. K.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Garmire, E.

Gladfelter, W. L.

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
[CrossRef]

Grzesik, U.

P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

Harrington, J. A.

Hashishin, Y.

Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
[CrossRef]

Hillrichs, G.

P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

Hirsch, J.

Hongo, A.

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hllow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
[CrossRef]

Hwang, J.-W.

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

Inoue, T.

H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
[CrossRef]

Jensen, K. F.

W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
[CrossRef]

Kaneda, K.

T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
[CrossRef]

Karlitschek, P.

K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

Kato, Y.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Kawakami, S.

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
[CrossRef]

Klein, K.-F.

P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

Koyama, J.

H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
[CrossRef]

Kubo, U.

Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
[CrossRef]

Leopold, K. E.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Mann, K. R.

K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
[CrossRef]

Matsuura, Y.

McMahon, T.

Mihailov, S.

Miyagi, M.

Y. Matsuura, M. Miyagi, “Flexible hollow waveguides for delivery of excimer laser light,” Opt. Lett. 23, 1226–1228 (1998).
[CrossRef]

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Y. Matsuura, M. Saito, M. Miyagi, A. Hongo, “Loss characteristics of circular hllow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989).
[CrossRef]

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
[CrossRef]

Nakano, H.

Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
[CrossRef]

Nishihara, H.

H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
[CrossRef]

Okada, K.

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

Onodera, S.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Osawa, M.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Phillips, E. C.

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

Saito, M.

Sakamoto, A.

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

Sanada, K.

T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
[CrossRef]

Simmonds, M. G.

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

Tanaka, H.

Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
[CrossRef]

Taylor, R. S.

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
[CrossRef]

R. S. Taylor, K. E. Leopold, R. K. Brimacombe, S. Mihailov, “Dependence of the damage and transmission properties of fused silica fibers on the excimer laser wavelength,” Appl. Opt. 27, 3124–3134 (1988).
[CrossRef] [PubMed]

Toriya, T.

T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
[CrossRef]

Tsubakihara, H.

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

Tsumanuma, T.

T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
[CrossRef]

Watanabe, T.

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Yamada, T.

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

Appl. Opt. (2)

Appl. Phys. Lett. (1)

H. Nishihara, T. Inoue, J. Koyama, “Low-loss parallel-plate waveguide at 10 µm,” Appl. Phys. Lett. 25, 391–393 (1974).
[CrossRef]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1785–1809 (1964).
[CrossRef]

Chem. Mater. (1)

W. L. GladFelter, D. C. Boyd, K. F. Jensen, “Trimethyamine complexes of alane as precursors for the low-pressure chemical vapor deposition of aluminum,” Chem. Mater. 1, 339–343 (1989).
[CrossRef]

Chemtronics (1)

M. G. Simmonds, E. C. Phillips, J.-W. Hwang, W. L. Gladfelter, “A stable, liquid precursor for aluminum,” Chemtronics 5, 155–158 (1991).

IEEE J. Quantum Electron. (1)

M. Miyagi, A. Hongo, S. Kawakami, “Transmission characteristics of dielectric-coated metallic waveguide for infrared transmission: slab waveguide model,” IEEE J. Quantum Electron. QE-19, 136–144 (1983).
[CrossRef]

J. Appl. Phys. (1)

R. K. Brimacombe, R. S. Taylor, K. E. Leopold, “Dependence of non-linear transmission properties of fused silica fibers on excimer laser wavelength,” J. Appl. Phys. 66, 4035–4039 (1989).
[CrossRef]

J. Lightwave Technol. (1)

M. Miyagi, S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Orig. (1)

K. Okada, T. Yamada, H. Tsubakihara, A. Sakamoto, “Enhancement in KrF laser transmission of low-OH silica fiber by photo-bleaching of defects,” Laser Orig. 25, 646–649 (1997; in Japanese).

Opt. Laser Technol. (1)

M. Osawa, Y. Kato, T. Watanabe, M. Miyagi, S. Abe, M. Aizawa, S. Onodera, “Fabrication of fluorocarbon polymer-coated silver hollow-glass waveguides for the infrared by the liquid-phase coating method,” Opt. Laser Technol. 27, 393–396 (1995).
[CrossRef]

Opt. Lett. (2)

Other (7)

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, New York, 1985).

E. D. Palik, ed., Handbook of Optical Constants of Solids II (Academic, New York, 1991).

T. Kodas, M. Hampden-Smith, eds., The Chemistry of Metal CVD (VCH, Weinheim, Germany, 1994).
[CrossRef]

Y. Hashishin, H. Nakano, H. Tanaka, U. Kubo, “UV-laser biotissue interactions and delivery systems,” in Specialty Fiber Optics for Biomedical and Industrial Applications, A. Katzir, J. A. Harrington, eds., Proc. SPIE2977, 105–114 (1997).
[CrossRef]

P. Karlitschek, K.-F. Klein, G. Hillrichs, U. Grzesik, “Improved UV-fiber for 193-nm excimer laser applications,” in Biomedical Fiber Optics, A. Katzir, J. A. Harrington, eds., Proc. SPIE2677, 127–134 (1996).
[CrossRef]

K.-F. Klein, G. Hillrichs, P. Karlitschek, K. R. Mann, “Possibilities and limitations of optical fibers for the transmission of excimer laser radiation,” in Laser-Induced Damage in Optical Materials, H. E. Bennett, A. H. Guenther, M. R. Kozlowski, B. E. Newnam, M. J. Soileau, eds., Proc. SPIE2966, 564–573 (1997).

T. Toriya, K. Kaneda, T. Tsumanuma, K. Sanada, “Characteristics of an optical fiber for high-power excimer laser,” in Biomedical Optoelectronic Instrumentation, A. Katzir, J. A. Harrington, M. Harris, eds., Proc. SPIE2396, 138–144 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Atomic-force microscope photographs of deposited aluminum surfaces: (a) aluminum formed without pretreatment, (b) aluminum formed after pretreatment with TiCl4.

Fig. 2
Fig. 2

Experimental setup for measurement of loss spectra in vacuum-ultraviolet to ultraviolet wavelengths.

Fig. 3
Fig. 3

Measured and calculated loss spectra of aluminum- and silver-coated hollow fibers in the vacuum-ultraviolet and ultraviolet regions. The fibers with inner diameters of 1 mm and lengths of 17 cm are excited with a Gaussian beam with a divergence angle of 3.7° FWHM.

Fig. 4
Fig. 4

Gas-inlet attachment for gas flow inside the bore of the hollow fiber.

Fig. 5
Fig. 5

Losses of 1-m long, bent and straight aluminum-coated hollow fibers with 1.0-mm bores for ArF- and KrF-excimer laser light.

Fig. 6
Fig. 6

Results of free-standing bend tests with ArF laser light: (a) L-shaped bend, (b) S-shaped bend.

Tables (1)

Tables Icon

Table 1 Complex Refractive Indices of Various Materialsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

α=n0k0u2n0k0T3×RezTETE0m modesReyTMTM0m modes1/2 RezTE+yTMHEnm, EHnmmodes,
zTE=1v2-1,  yTM=v2v2-1.
R=R0 exp-4πn0σ cos ϕλ2,

Metrics