Abstract

Absolute calibration of spectral shortwave radiometers is usually performed with National Institute of Standards and Technology (NIST) or NIST-traceable incandescent lamps. We compare 18 irradiance standards from NIST and three commercial vendors using the same spectrometer to assess their agreement with our working standard. The NIST procedure is followed for the 1000-W FEL lamps from NIST, Optronics, and EG&G. A modified calibration procedure developed by Li-Cor is followed for their 200-W tungsten–halogen lamps. Results are reproducible from one day to the next to approximately 0.1% using the same spectrometer. Measurements taken four months apart using two similar but different spectrometers were reproducible to 0.5%. The comparisons suggest that even NIST standards may disagree with each other beyond their stated accuracy. Some of the 1000-W commercial lamps agreed with the NIST lamps to within their stated accuracy, but not all. Surprisingly, the lowest-cost lamps from Li-Cor agreed much better with the NIST lamps than their stated accuracy of 4%, typically within 2%. An analysis of errors leads us to conclude that we can transfer the calibration from a standard lamp to a secondary standard lamp with approximately 1% added uncertainty. A field spectrometer was calibrated with a secondary standard, producing a responsivity for the spectrometer that was within 5% of the responsivity obtained by Langley calibration using routine field measurements.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Stokes, S. E. Schwartz, “The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
    [CrossRef]
  2. T. P. Charlock, T. L. Alberta, “CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meterol. Soc. 77, 2673–2683 (1996).
    [CrossRef]
  3. S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
    [CrossRef]
  4. J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).
  5. EG&G Gamma Scientific, Inc., “Instruction manual for 5000 series lamp standards and 5000-6 lamp housing,” (San Diego, Calif., 1992).
  6. Li-Cor, Inc., “1800-02 optical radiation calibrator instruction manual,” (P. O. Box 4425, Lincoln, Neb. 68504, 1990).
  7. Optronics Laboratories, Inc., “Instructions for the Optronics Laboratories 1000-W FEL tungsten-halogen lamp standards of total and spectral irradiance,” (Orlando, Fla., 1995).
  8. L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).
  9. K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
    [CrossRef]
  10. C. Wehrli, “Extraterrestrial solar spectrum,” (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).
  11. R. L. Kurucz, “The solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, PL-TR-95-2060, G. P. Anderson, R. H. Picard, J. H. Chetwynd, eds. (Phillips Laboratory Directorate of Geophysics, Hanscom Air Force Base, Mass., 1995), pp. 333–334.
  12. J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
    [CrossRef]
  13. B. Schmid, P. R. Spyak, S. F. Biggar, C. Wehrli, J. Sekler, T. Ingold, C. Mätzler, N. Kämpfer, “Evaluation of the applicability of solar and lamp radiometric calibrations of a precision Sun photometer operating between 300 and 1025 nm,” Appl. Opt. 37, 3923–3941 (1998).
    [CrossRef]

1998

1997

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

1996

T. P. Charlock, T. L. Alberta, “CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meterol. Soc. 77, 2673–2683 (1996).
[CrossRef]

1994

G. M. Stokes, S. E. Schwartz, “The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

1990

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

1987

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Ackerman, T. P.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Alberta, T. L.

T. P. Charlock, T. L. Alberta, “CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meterol. Soc. 77, 2673–2683 (1996).
[CrossRef]

Beauharnois, M.

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Ben-David, A.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Berndt, J.

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Biggar, S. F.

Charlock, T. P.

T. P. Charlock, T. L. Alberta, “CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meterol. Soc. 77, 2673–2683 (1996).
[CrossRef]

Clothiaux, E. E.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Harrison, L.

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Herman, B. M.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Hsia, J. J.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Ingold, T.

Jackson, J. K.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).

Kämpfer, N.

Kato, S.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Kiedron, P.

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Kurucz, R. L.

R. L. Kurucz, “The solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, PL-TR-95-2060, G. P. Anderson, R. H. Picard, J. H. Chetwynd, eds. (Phillips Laboratory Directorate of Geophysics, Hanscom Air Force Base, Mass., 1995), pp. 333–334.

Mace, G. G.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Mather, J. H.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Mätzler, C.

McSparron, D. A.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).

Michalsky, J.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Mielenz, K. D.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Min, Q.

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Murcray, F.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Parr, A. C.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Pilewskie, P. A.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Reagan, J. A.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Saunders, R. D.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).

Schmid, B.

Schwartz, S. E.

G. M. Stokes, S. E. Schwartz, “The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Scott-Fleming, I. C.

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

Sekler, J.

Spyak, P. R.

Stokes, G. M.

G. M. Stokes, S. E. Schwartz, “The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Walker, J. H.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).

Wehrli, C.

Wesely, M. L.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

Appl. Opt.

Bull. Am. Meteorol. Soc.

G. M. Stokes, S. E. Schwartz, “The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Bull. Am. Meterol. Soc.

T. P. Charlock, T. L. Alberta, “CERES/ARM/GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data,” Bull. Am. Meterol. Soc. 77, 2673–2683 (1996).
[CrossRef]

IEEE Trans. Geosci. Remote Sensing

J. A. Reagan, P. A. Pilewskie, I. C. Scott-Fleming, B. M. Herman, A. Ben-David, “Extrapolation of Earth-based solar irradiance measurements to exoatmospheric levels for broad-band and selected absorption-band observations,” IEEE Trans. Geosci. Remote Sensing GE-25, 647–653 (1987).
[CrossRef]

J. Geophys. Res.

S. Kato, T. P. Ackerman, E. E. Clothiaux, J. H. Mather, G. G. Mace, M. L. Wesely, F. Murcray, J. Michalsky, “Uncertainties in modeled and measured clear-sky surface shortwave irradiances,” J. Geophys. Res. 102, 25,881–25,898 (1997).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol.

K. D. Mielenz, R. D. Saunders, A. C. Parr, J. J. Hsia, “The 1990 NIST scales of thermal radiometry,” J. Res. Natl. Inst. Stand. Technol. 95, 621–629 (1990).
[CrossRef]

Other

C. Wehrli, “Extraterrestrial solar spectrum,” (Physikalisch-Meterologisches Observatorium Davos and World Radiation Center, Davos-Dorf, Switzerland, 1985).

R. L. Kurucz, “The solar irradiance by computation,” in Proceedings of the 17th Annual Conference on Atmospheric Transmission Models, PL-TR-95-2060, G. P. Anderson, R. H. Picard, J. H. Chetwynd, eds. (Phillips Laboratory Directorate of Geophysics, Hanscom Air Force Base, Mass., 1995), pp. 333–334.

J. H. Walker, R. D. Saunders, J. K. Jackson, D. A. McSparron, “Spectral irradiance calibrations,” (National Bureau of Standards, Gaithersburg, Md., 1987).

EG&G Gamma Scientific, Inc., “Instruction manual for 5000 series lamp standards and 5000-6 lamp housing,” (San Diego, Calif., 1992).

Li-Cor, Inc., “1800-02 optical radiation calibrator instruction manual,” (P. O. Box 4425, Lincoln, Neb. 68504, 1990).

Optronics Laboratories, Inc., “Instructions for the Optronics Laboratories 1000-W FEL tungsten-halogen lamp standards of total and spectral irradiance,” (Orlando, Fla., 1995).

L. Harrison, M. Beauharnois, J. Berndt, P. Kiedron, J. Michalsky, Q. Min, “The rotating shadowband spectroradiometer (RSS) at SGP,” Geophys. Res. Lett. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Ratios of NIST standard lamp F340 irradiance to the irradiance of eight secondary lamps from our initial, limited comparison of standard lamps in August 1997. Li-Cor (ARM) and Li-Cor (ASRC) are the same sources in two different calibration housings. WS, working standard.

Fig. 2
Fig. 2

Ratios of spectral sensitivities of selected lamps at the beginning and end of each day’s run.

Fig. 3
Fig. 3

Ratios of the irradiance of the working standard (WS) to each of the four NIST lamps. The solid and dotted curves denote results from two different days.

Fig. 4
Fig. 4

Ratios of the irradiance of the working standard (WS) to each of Optronics’s 1000-W FEL lamps.

Fig. 5
Fig. 5

Ratios of the irradiance of the working standard (WS) to each of EG&G’s 1000-W FEL lamps. The solid and dotted curves are from tests 4 months apart using different but similar spectrometers.

Fig. 6
Fig. 6

Ratios of the irradiance of the working standard (WS) to several Li-Cor 200-W tungsten–halogen lamps operated in two different Li-Cor 1800-02 calibrators.

Fig. 7
Fig. 7

Sources of fractional error that arise in transferring calibrations within the laboratory between spectral irradiance standards.

Fig. 8
Fig. 8

Responsivity of a RSS field unit as measured using a Li-Cor lamp and using the Langley approach described in the text in absolute terms (top) and as a ratio (bottom). The standard Langley technique fails in strong molecular bands, e.g., near 940 nm. The largest discrepancy outside molecular bands is approximately 5% near 475 nm.

Fig. 9
Fig. 9

Slit functions for the spectrometer (RSS) used in the transfer of calibration between lamps based on the response at three laser wavelengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

V=V0 exp-τm
lnV=lnV0-τm,

Metrics