Abstract

A theoretical and experimental study is conducted for the direct-detection Doppler Lidar developed by the Service d’Aéronomie du Centre National de la Recherche Scientifique. Thanks to a specific design, the double-edge technique that applies primarily to Rayleigh scattering can also be employed in presence of aerosols backscatter. We focus on a careful estimate of the particle-induced error on the wind measurements. With a theoretical model for the Fabry–Perot interferometer and two sets of calibration measurements, the true spectral properties of the interferometer and the calibration curves are recovered. Furthermore, the particle-induced error is estimated for varying values of the scattering ratio at 532 nm. When applied to real atmospheric signals, this error is shown to be negligible. A comparison between ancillary data and the wind and backscatter ratio as retrieved from the Doppler lidar signals confirms our estimate.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Barat, C. Cot, “Accuracy analysis of rubsonde-GPS wind sounding system,” J. Appl. Meteor. 34, 1123–1132 (1995).
    [CrossRef]
  2. M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
    [CrossRef]
  3. C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, first climatological results,” Appl. Opt., 38, 2410–2421 (1999).
  4. J. A. McKay, “Modeling of the direct detection Doppler wind lidar. I. The edge technique,” Appl. Opt. 37, 6480–6486 (1998).
    [CrossRef]
  5. A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
    [CrossRef]
  6. M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
    [CrossRef]
  7. C. A. Tepley, S. I. S. Sargoytchev, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
    [CrossRef]

1999 (1)

1998 (1)

1995 (1)

J. Barat, C. Cot, “Accuracy analysis of rubsonde-GPS wind sounding system,” J. Appl. Meteor. 34, 1123–1132 (1995).
[CrossRef]

1994 (1)

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

1993 (1)

C. A. Tepley, S. I. S. Sargoytchev, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

1992 (1)

A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

1989 (1)

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Barat, J.

J. Barat, C. Cot, “Accuracy analysis of rubsonde-GPS wind sounding system,” J. Appl. Meteor. 34, 1123–1132 (1995).
[CrossRef]

Chanin, M.-L.

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Cot, C.

J. Barat, C. Cot, “Accuracy analysis of rubsonde-GPS wind sounding system,” J. Appl. Meteor. 34, 1123–1132 (1995).
[CrossRef]

Garnier, A.

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, first climatological results,” Appl. Opt., 38, 2410–2421 (1999).

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hauchecorne, A.

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, first climatological results,” Appl. Opt., 38, 2410–2421 (1999).

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Hertzog, A.

McKay, J. A.

Nedeljkovic, D.

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Porteneuve, J.

C. Souprayen, A. Garnier, A. Hertzog, A. Hauchecorne, J. Porteneuve, “Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, first climatological results,” Appl. Opt., 38, 2410–2421 (1999).

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

Sargoytchev, S. I. S.

C. A. Tepley, S. I. S. Sargoytchev, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Souprayen, C.

Tepley, C. A.

C. A. Tepley, S. I. S. Sargoytchev, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

A. Garnier, M.-L. Chanin, “Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere,” Appl. Phys. B 55, 35–40 (1992).
[CrossRef]

Geophys. Res. Lett. (1)

M.-L. Chanin, A. Hauchecorne, A. Garnier, J. Porteneuve, “A Doppler lidar for measuring winds in the middle atmosphere,” Geophys. Res. Lett. 16, 1273–1276 (1989).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

C. A. Tepley, S. I. S. Sargoytchev, “The Doppler Rayleigh lidar system at Arecibo,” IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993).
[CrossRef]

J. Appl. Meteor. (1)

J. Barat, C. Cot, “Accuracy analysis of rubsonde-GPS wind sounding system,” J. Appl. Meteor. 34, 1123–1132 (1995).
[CrossRef]

J. Atmos. Terr. Phys. (1)

M.-L. Chanin, A. Hauchecorne, A. Garnier, D. Nedeljkovic, “Recent lidar developments to monitor stratosphere-troposphere exchange,” J. Atmos. Terr. Phys. 56, 1073–1081 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of the Rayleigh and the Mie lines as located between the two bandpasses of the FPI.

Fig. 2
Fig. 2

Bivariate surfaces related to the possible performances of the FPI: Sensibility to Mie scattering (left panel) and minimum statistical error (right panel). See text for the definition of such functions. The large cross corresponds to the final parameters characterizing the FPI.

Fig. 3
Fig. 3

Theoretical spectral characteristics of the FPI at T = 220 K: Mie and Rayleigh transmissions for channels A and B (upper-left panel), ratio and difference in Mie and Rayleigh transmissions (upper-right panel), calibration curves R = f(δλ v , T = 220 K, 1 ≤ Rdif ≤ 10) (lower-left panel), and Mie-induced wind error in case of pure Rayleigh calculation for 1 ≤ Rdif ≤ 10 (lower-right panel).

Fig. 4
Fig. 4

Calibration measurements of the dual FPI in 1995 (upper panel) and in 1996 (lower panel). The resulting transmissions for the approximated spectral curves from the theoretical model are superposed (see text for details).

Fig. 5
Fig. 5

Same as Fig. 3 but for the 1995 calibration.

Fig. 6
Fig. 6

Same as Fig. 3 but for the 1996 calibration.

Fig. 7
Fig. 7

Total (solid curve) and Rayleigh (dashed curve) transmitted backscatter through channel A filter. The signal is one of the 1-min-integration records on 16 February 1998 for the northward pointing. Clouds locations are reported with the crosses.

Fig. 8
Fig. 8

Vertical profiles of the scattering ratio Rdif (left panel) reconstructed from the total channel A backscatter from the Doppler lidar (solid curve) and given by the Rayleigh lidar for the same period (dashed curve). Mie-induced error on the wind measurements as deduced from estimated Rdif (right panel). Measurements have been performed on 16 February 1998 between 19:00 p.m. and 01:00 a.m.

Fig. 9
Fig. 9

Vertical profile of the northward component from the Doppler wind (curves) and from the operational analysis from the ECMWF at noon (star). The upper profile (solid curve) is for the upper channels, and the lower profiles (light solid and light dashed curves) are for the lower channels (see text). Same hours as for Fig. 8.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

IA,Bλ=0θmaxT0dθ1+4FSRπΔλ1/22 sin22πeA,B cosθλ.
Nλ, z, θ=NoToptSz-z02 Tatm2z0, z, λ0×Fλ, λ0, δλv, T cos θΔz,
Fλ, λ0, δλv, T=Kβmλ0nmz2ln 2π 4ΔλT2+ΔλE2exp-4 ln 2λ-λ0-2δλv24ΔλT2+ΔλE2Kβpλ0, znpz2ln 2πΔλEexp-4 ln 2λ-λ0-2δλv2ΔλE2.
NA,Bz=KA,BToptTa2z-z02 βmnmz-+ IA,BλFmλ, T, δλvdλKA,BToptTa2z-z02 βpnpz-+ IA,BλFpλ, δλvdλ.
R=NA-NBNA+NB
R=TAmβmnm+TApβpnp-TBmβmnm+TBpβpnpTAmβmnm+TApβpnp+TBmβmnm+TBpβpnp.
Rdif=1+βpnpβmnm,
R=TAm1+Rdif-1TApTAm-TBm1+Rdif-1TBpTBmTAm1+Rdif-1TApTAm+TBm1+Rdif-1TBpTBm.
ΔRT=TApδλvTAmδλv, T-TBpδλvTBmδλv, T=0  δλv, T
h=RδλvTa+Tb1/2-1,
δλv=f-1R, Rdif1, T
Tobspδλv=αTfit1pδλv+1-αTfit2pδλv.
NA,Bδλv, T=NmTA,Bmδλv, T+NpTA,Bpδλv,
NA,Bδλv, T=NmTA,Bmδλv, Tsmooth variation×1+Rdif-1TA,BpδλvTA,Bmδλv, Tpeaking within the clouds.
Rdif-1=NA,Bδλv, TNA,Bfit-1TA,Bmδλv, TTA,Bpδλv.

Metrics