Abstract

A synchronous-amplitude-controlled and time-delay-controlled photonic controller for phased-array antenna applications is proposed and demonstrated. Amplitude control is based on a variable optical attenuator system that operates in synchronism with the photonic delay line (PDL). This amplitude control system can provide both the signal calibration for the different PDL channels and settings required for driving the antenna elements of a phased-array radar and the optimum optical power levels that impinge on the photodetector for optimum fiber-optic-link performance. Various variable amplitude control modules based on ferroelectric liquid crystals, polymer-dispersed liquid crystals, and photoconductive devices are proposed. We show that the dynamic range loss due to a switched-PDL inherent structure loss can be compensated when we control the optical power from the laser, using the synchronous optical attenuation system. For the first time to our knowledge, full dynamic range loss compensation is demonstrated for an external-modulation-fed 3-bit switched PDL with a structure optical insertion loss of 5.5 dB. A compression dynamic range of 158 dB·Hz was measured at 6 GHz, and a spurious free dynamic range of 111 dB·Hz2/3 was estimated. Feasibility of the dynamic range compensation technique for multichannel, higher-insertion-loss PDL systems is discussed.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).
  2. N. A. Riza, N. Madamopoulos, “Characterization of a flc-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
    [CrossRef]
  3. N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased array antenna control using externally modulated microwave fiber-optic link,” in Optical Technology for Microwave Applications, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).
  4. E. Ackerman, C. Cox, N. A. Riza, Eds., Selected Papers on Analog Fiber-Optic Links, Vol. MS149 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1998).
  5. A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
    [CrossRef]
  6. C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
    [CrossRef]
  7. C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
    [CrossRef]
  8. G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
    [CrossRef]
  9. E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
    [CrossRef]
  10. K. J. Williams, L. T. Nichols, R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
    [CrossRef]
  11. A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).
  12. N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
    [CrossRef]
  13. L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
    [CrossRef]
  14. W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  15. L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).
  16. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  17. H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
    [CrossRef]
  18. D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
    [CrossRef] [PubMed]
  19. R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.
  20. Optical Variable Attenuator Module, OVA-610, Product Specifications (Santec Corporation, Aichi, Japan, 1998).
  21. N. A. Riza, “Advances in three dimensional reversible photonic modules for phased array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–2283 (1996).
  22. S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
    [CrossRef]
  23. M. O. Freeman, T. A. Brown, D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917–3929 (1992).
    [CrossRef] [PubMed]
  24. J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
    [CrossRef]
  25. N. A. Riza, S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
    [CrossRef]
  26. V. T. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
    [CrossRef] [PubMed]
  27. N. A. Riza, S. E. Saddow, “N-bit optically controlled microwave signal attenuator using the photoconductive effect,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 9–18 (1995).
    [CrossRef]
  28. N. A. Riza, S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
    [CrossRef]
  29. Designer’s Guide to External Modulation, (Uniphase Telecommunications Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).
  30. B. H. Kolner, D. W. Dolfi, “Intermodulation distortion and compression is an integrated electro-optic modulator,” Appl. Opt. 26, 3676–3680 (1987).
    [CrossRef] [PubMed]
  31. H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
    [CrossRef]
  32. C. Cox, E. Ackerman, G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.
  33. K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).
  34. M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
    [CrossRef]
  35. R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
    [CrossRef]
  36. G. Drake, B. Merritt, “High-dynamic range applications of integrated optic modulators,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 2–8 (1995).
    [CrossRef]

1998 (3)

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

K. J. Williams, L. T. Nichols, R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

1997 (3)

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a flc-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

1996 (2)

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).

1995 (4)

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
[CrossRef]

V. T. Tondiglia, L. V. Natarajan, R. L. Sutherland, T. J. Bunning, W. W. Adams, “Volume holographic image storage and electro-optical readout in a polymer-dispersed liquid-crystal film,” Opt. Lett. 20, 1325–1327 (1995).
[CrossRef] [PubMed]

N. A. Riza, S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
[CrossRef]

A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).

1993 (2)

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

1992 (3)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

M. O. Freeman, T. A. Brown, D. M. Walba, “Quantized complex ferroelectric liquid crystal spatial light modulators,” Appl. Opt. 31, 3917–3929 (1992).
[CrossRef] [PubMed]

1991 (3)

D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
[CrossRef] [PubMed]

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

1990 (2)

C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
[CrossRef]

G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
[CrossRef]

1987 (1)

1985 (1)

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

1948 (1)

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Ackerman, E.

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

C. Cox, E. Ackerman, G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.

Adams, W. W.

Bann, S.

Bernstein, N.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Betts, G.

C. Cox, E. Ackerman, G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.

Betts, G. E.

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
[CrossRef]

C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
[CrossRef]

Broomfield, S. E.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

Brown, T. A.

Bunning, T. J.

Cardone, L.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Chang, W. S. C.

M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

Cox, C.

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
[CrossRef]

C. Cox, E. Ackerman, G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.

Cox, C. H.

G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
[CrossRef]

Dagenais, M.

K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).

Daryoush, A. S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Dolfi, D.

Dolfi, D. W.

Drake, G.

A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).

G. Drake, B. Merritt, “High-dynamic range applications of integrated optic modulators,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 2–8 (1995).
[CrossRef]

Esman, R.

K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).

Esman, R. D.

K. J. Williams, L. T. Nichols, R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
[CrossRef]

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
[CrossRef]

Farwell, M. L.

M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

Floyd, W. L.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.

Forrest, S. R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Freeman, M. O.

Goldberg, H.

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Helkey, R.

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

Huber, D. R.

M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

Huignard, J. P.

Johns, S.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Johnson, L. M.

C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
[CrossRef]

Kasemset, D.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

Kim, J.

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

Kolner, B. H.

Lee, J. J.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Madamopoulos, N.

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a flc-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased array antenna control using externally modulated microwave fiber-optic link,” in Optical Technology for Microwave Applications, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).

Mathis, R. F.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.

Merritt, B.

G. Drake, B. Merritt, “High-dynamic range applications of integrated optic modulators,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 2–8 (1995).
[CrossRef]

Merritt, S. W.

A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).

Michel-Gabriel, F.

Natarajan, L. V.

Neil, M. A. A.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

Newberg, I. L.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W. W.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Nichols, L. T.

Paige, E. G. S.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

Pappert, S. A.

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.

Payson, P.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Ray, K. G.

G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
[CrossRef]

Riza, N. A.

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

N. A. Riza, N. Madamopoulos, “Characterization of a flc-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

N. A. Riza, S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
[CrossRef]

N. A. Riza, S. E. Saddow, “N-bit optically controlled microwave signal attenuator using the photoconductive effect,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 9–18 (1995).
[CrossRef]

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased array antenna control using externally modulated microwave fiber-optic link,” in Optical Technology for Microwave Applications, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

N. A. Riza, “Advances in three dimensional reversible photonic modules for phased array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–2283 (1996).

Saddow, S. E.

N. A. Riza, S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
[CrossRef]

N. A. Riza, S. E. Saddow, “N-bit optically controlled microwave signal attenuator using the photoconductive effect,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 9–18 (1995).
[CrossRef]

Samant, N. R.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

Soref, R. A.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Sutherland, R. L.

Tangonan, G. L.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Taylor, R.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Tondiglia, V. T.

Toughlian, E. N.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Walba, D. M.

Walston, A. A.

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Wanuga, S.

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

Williams, K.

K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).

Williams, K. J.

K. J. Williams, L. T. Nichols, R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
[CrossRef]

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
[CrossRef]

Xu, L.

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

Yang, G. G.

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

Yuan, S.

N. A. Riza, S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

Yurek, A. M.

A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).

Zmuda, H.

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt. (2)

Electron. Lett. (1)

S. E. Broomfield, M. A. A. Neil, E. G. S. Paige, G. G. Yang, “Programmable binary phase-only optical device based on ferroelectric liquid crystal SLM,” Electron. Lett. 28, 26–27 (1992).
[CrossRef]

IEEE Microwave Guid. Wave Lett. (1)

N. A. Riza, S. E. Saddow, “Optically controlled photoconductive N-bit switched microwave signal attenuator,” IEEE Microwave Guid. Wave Lett. 5, 448–450 (1995).
[CrossRef]

IEEE Photonics Technol. Lett. (6)

K. Williams, R. Esman, M. Dagenais, “Nonlinearities in p-i-n microwave photodetectors,” IEEE Photonics Technol. Lett. 14, 94–96 (1996).

M. L. Farwell, W. S. C. Chang, D. R. Huber, “Increased linear dynamic range by low biasing the Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 5, 779–782 (1993).
[CrossRef]

R. D. Esman, K. J. Williams, “Wideband efficiency improvement of fiber optic systems by carrier subtraction,” IEEE Photonics Technol. Lett. 7, 218–220 (1995).
[CrossRef]

G. E. Betts, C. H. Cox, K. G. Ray, “20 GHz optical analog link using an external modulator,” IEEE Photonics Technol. Lett. 2, 923–925 (1990).
[CrossRef]

L. Xu, R. Taylor, S. R. Forrest, “True time-delay phased-array antenna feed system based on optical heterodyne techniques,” IEEE Photonics Technol. Lett. 8, 160–162 (1996).
[CrossRef]

H. Zmuda, R. A. Soref, P. Payson, S. Johns, E. N. Toughlian, “Photonic beamformer for phased array antennas using a fiber grating prism,” IEEE Photonics Technol. Lett. 9, 241–243 (1997).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (4)

E. Ackerman, S. Wanuga, D. Kasemset, A. S. Daryoush, N. R. Samant, “Maximum dynamic range operation of microwave external modulation fiber-optic link,” IEEE Trans. Microwave Theory Tech. 41, 1299–1306 (1993).
[CrossRef]

A. S. Daryoush, E. Ackerman, N. R. Samant, S. Wanuga, D. Kasemset, “Interfaces for high-speed fiber-optic links: analysis and experiment,” IEEE Trans. Microwave Theory Tech. 39, 2031–2044 (1991).
[CrossRef]

C. Cox, G. E. Betts, L. M. Johnson, “An analytic and experimental comparison of direct and external modulation in analog fiber-optic links,” IEEE Trans. Microwave Theory Tech. 38, 501–509 (1990).
[CrossRef]

C. Cox, E. Ackerman, R. Helkey, G. E. Betts, “Techniques and performance of intensity-modulation direct-detection analog optical links,” IEEE Trans. Microwave Theory Tech. 45, 1375–1383 (1997).
[CrossRef]

J. Lightwave Technol. (3)

N. A. Riza, N. Madamopoulos, “Characterization of a flc-based time delay unit for phased array antennas,” J. Lightwave Technol. 15, 1088–1094 (1997).
[CrossRef]

K. J. Williams, L. T. Nichols, R. D. Esman, “Photodetector nonlinearity limitations on a high-dynamic range 3 GHz fiber-optic link,” J. Lightwave Technol. 16, 192–199 (1998).
[CrossRef]

W. W. Ng, A. A. Walston, G. L. Tangonan, J. J. Lee, I. L. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Microwave J. (2)

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

A. M. Yurek, S. W. Merritt, G. Drake, “Determining the cascade parameters of externally modulated links,” Microwave J. 38, 80–86 (1995).

Opt. Commun. (1)

N. Madamopoulos, N. A. Riza, “Adaptable-delay balanced-loss binary photonic delay line architectures using polarization switching,” Opt. Commun. 152, 135–143 (1998).
[CrossRef]

Opt. Eng. (2)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength-multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

N. A. Riza, S. Yuan, “Demonstration of a liquid-crystal adaptive alignment tweeker for high-speed infrared band fiber-fed free-space systems,” Opt. Eng. 37, 1876–1880 (1998).
[CrossRef]

Opt. Lett. (2)

Proc. IRE (1)

H. Goldberg, “Some notes on noise figure,” Proc. IRE 36, 1205–1214 (1948).
[CrossRef]

Other (11)

C. Cox, E. Ackerman, G. Betts, “Relationship between gain and noise figure of an optical analog link,” in IEEE Microwave Theory and Techniques Society Symposium Digest, R. G. Ranson, ed. (Institute of Electrical and Electronics Engineers, New York, 1996), pp. 1551–1554.

G. Drake, B. Merritt, “High-dynamic range applications of integrated optic modulators,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 2–8 (1995).
[CrossRef]

N. A. Riza, S. E. Saddow, “N-bit optically controlled microwave signal attenuator using the photoconductive effect,” in Optical Technology for Microwave Applications VII, A. P. Goutzoulis, ed., Proc. SPIE2560, 9–18 (1995).
[CrossRef]

Designer’s Guide to External Modulation, (Uniphase Telecommunications Products, Electro-Optic Products Division, Bloomfield, Conn., 1997).

N. A. Riza, ed., Selected Papers on Photonic Control Systems for Phased Array Antennas, Vol. MS136 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1997).

J. Kim, N. A. Riza, “Fiber array optical coupling design issues for photonic beamformers,” in Advances in Optical Information Processing VII, D. R. Pape, ed., Proc. SPIE2754, 271–282 (1996).
[CrossRef]

R. F. Mathis, W. L. Floyd, S. A. Pappert, “High performance fiber optic delay line,” Proceedings of the Seventh Annual DARPA Symposium on Photonic Systems for Antenna Applications (PSAA-7), M. L. Van Blaricum, Conference Chair, C. H. Cox, Program Chair (Defense Advanced Research Projects Agency, Washington, D.C., 1997), pp. 9–14.

Optical Variable Attenuator Module, OVA-610, Product Specifications (Santec Corporation, Aichi, Japan, 1998).

N. A. Riza, “Advances in three dimensional reversible photonic modules for phased array control,” in Photonics and Radio Frequency, B. M. Hendrickson, ed., Proc. SPIE2844, 274–2283 (1996).

N. Madamopoulos, N. A. Riza, “Switched photonic delay line for phased array antenna control using externally modulated microwave fiber-optic link,” in Optical Technology for Microwave Applications, A. Goutzoulis, ed., Proc. SPIE3160, 45–54 (1997).

E. Ackerman, C. Cox, N. A. Riza, Eds., Selected Papers on Analog Fiber-Optic Links, Vol. MS149 of SPIE Milestone Series (SPIE Press, Bellingham, Wash., 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Typical experimental setup for the externally modulated FO link. A FO attenuator is used to adjust the optical power impinging on the photodetector. PM, polarization maintaining; cw, continuous wave.

Fig. 2
Fig. 2

Dynamic range loss compensation method based on high-speed electronic control of the variable optical attenuator in synchronous control with the PDL settings.

Fig. 3
Fig. 3

(a) Basic design of a high-speed, variable optical attenuator that operates in synchronism with the variable PDL. The variable optical attenuator consists of a cascade of binary attenuator modules. (b) The high-speed, variable optical attenuator based on fast FLC polarization switching devices and polarization beam-splitter cubes (TIR, total internal reflection; P, polarizer; S, polarization switch; A i , attenuation plate with attenuation value Ai; A 0, attenuation plate with zero attenuation). (c) Phase-perturbation-based optical attenuator with I × J independently, 0–π phase, controlled FLC arrays (SMF, single-mode fiber; GRIN, gradient-index lens). (d) Single-stage gray-scale optical attenuator based on a holographic PDLC device with I × J independently controlled variable diffraction efficiency programmable gratings (PG’s). (e) The N-bit electro-optic attenuator based on the photoconductive effect. The 2-D VCSEL array is used to activate each photoconductive bit. (Si:CPW PCS, coplanar microwave waveguide on a photoconductive silicon substrate).

Fig. 4
Fig. 4

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 6 GHz (resolution bandwidth 1 kHz).

Fig. 5
Fig. 5

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 6 GHz when the PDL is inserted in the optical path (resolution bandwidth 1 kHz).

Fig. 6
Fig. 6

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 6 GHz when the dynamic range loss recovery technique is used (resolution bandwidth 1 kHz).

Fig. 7
Fig. 7

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 3 GHz (resolution bandwidth 1 kHz).

Fig. 8
Fig. 8

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 3 GHz when the PDL is inserted in the optical path (resolution bandwidth 1 kHz).

Fig. 9
Fig. 9

FO-link fundamental and two-tone intermodulation distortion output versus the link fundamental input at 3 GHz when the dynamic range loss recovery technique is used (resolution bandwidth 1 kHz).

Fig. 10
Fig. 10

Network analyzer plots showing the rf gain of the FO link (a) without the PDL, (b) with the PDL, and (c) with the PDL and the dynamic range compensation technique.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Pin,-1 dB=Pπ-3.9 dB=21.6 dBm.
Pin,TOI=Pπ+5.1 dB=30.7 dBm.
NF=10 loginput SNRoutput SNR=10 logSi/NiSo/No,
NF=Pnoise floor--174+10 logB-G,

Metrics