Abstract

Diffractive optics fabrication is performed by two complementary processing methods that rely on the photoablation of materials by ultrashort UV laser pulses. The spatially selective ablation of materials permits the direct microetching of high-quality surface-relief patterns. In addition, the direct, spatially selective transfer of the ablated material onto planar and nonplanar receiving substrates provides a complementary microprinting operation. The radiation from the ultrashort pulsed excimer laser results in superior quality at relatively low-energy density levels, owing to the short absorption length and minimal thermal-diffusion effects. Computer-generated holographic structures are produced by both modes of operation. Submicrometer features, including Bragg-type structures, are microprinted onto planar and high-curvature optical-fiber surfaces, demonstrating the unique ability of the schemes for complex microstructure and potentially nanostructure development.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, ed., International Trends in Optics (Academic, London, 1991).
  2. G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
    [CrossRef]
  3. T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
    [CrossRef]
  4. E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
    [CrossRef]
  5. L. Ristic, ed., Sensor Technology and Devices (Artech House, Boston, 1994).
  6. N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996).
    [CrossRef] [PubMed]
  7. G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
    [CrossRef] [PubMed]
  8. J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
    [CrossRef]
  9. J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
    [CrossRef]
  10. E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
    [CrossRef]
  11. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
    [CrossRef]
  12. E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
    [CrossRef]
  13. T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
    [CrossRef]
  14. J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996).
    [CrossRef]
  15. P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
    [CrossRef]
  16. S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
    [CrossRef]
  17. T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997).
    [CrossRef]
  18. X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
    [CrossRef]
  19. P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996).
    [CrossRef]
  20. I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
    [CrossRef]
  21. C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
    [CrossRef]

1998 (2)

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

1997 (3)

T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997).
[CrossRef]

X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

G. P. Behrmann, M. T. Duignan, “Excimer laser micromachining for rapid fabrication of diffractive optical elements,” Appl. Opt. 36, 4666–4674 (1997).
[CrossRef] [PubMed]

1996 (3)

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996).
[CrossRef] [PubMed]

P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996).
[CrossRef]

J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996).
[CrossRef]

1995 (2)

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
[CrossRef]

1994 (3)

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
[CrossRef]

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

1992 (1)

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

1989 (2)

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

1988 (1)

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

1986 (1)

J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
[CrossRef]

Adrian, F. J.

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
[CrossRef]

Behrmann, G. P.

Bennett, T. D.

T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
[CrossRef]

Bizenberger, P.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Bohandy, J.

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
[CrossRef]

Bolstad, H. C.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

Boutsikaris, L.

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996).
[CrossRef] [PubMed]

Dainty, P.

de Unamuno, S.

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

Du, D.

X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Duignan, M. T.

Dutta, S. K.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Fogarassy, E.

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Fotakis, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

Fuchs, C.

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Gill, D. S.

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

Götz, T.

T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997).
[CrossRef]

Grigoropoulos, C.

T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
[CrossRef]

Grigoropoulos, C. P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

Grivas, C.

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

Hall, T. J.

Hashizume, H.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

Hauchecorne, G.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Ihlemann, J.

J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996).
[CrossRef]

Ilhemann, J.

P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996).
[CrossRef]

Jette, A. N.

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

Kading, O. W.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Kalpouzos, C.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

Kerherve, F.

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Kim, B. F.

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
[CrossRef]

Kobayashi, S.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

Krajnovich, D. J.

T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
[CrossRef]

Kuhlow, B.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Liu, X.

X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Mailis, S.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996).
[CrossRef] [PubMed]

Matthias, E.

S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
[CrossRef]

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Mourou, G.

X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

Neske, E.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Papakonstantinou, P.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

Parmitter, P.

Pawlowski, E.

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Perriere, J.

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Petzoldt, S.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Pissadakis, S.

Preuss, S.

S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
[CrossRef]

Pronko, P. P.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Reichling, M.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Seki, M.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

Siegel, J.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Simon, P.

P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996).
[CrossRef]

Singh, R. K.

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

Skurk, H.

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

Stuke, M.

T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997).
[CrossRef]

S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
[CrossRef]

Swanson, G. J.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Vainos, N. A.

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

N. A. Vainos, S. Mailis, S. Pissadakis, L. Boutsikaris, P. Parmitter, P. Dainty, T. J. Hall, “Excimer laser use for microetching computer-generated holographic structures,” Appl. Opt. 35, 6304–6319 (1996).
[CrossRef] [PubMed]

Veldkamp, W. B.

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

Wolff-Rottke, B.

J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996).
[CrossRef]

Yatagai, T.

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

Zergioti, I.

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. A (6)

E. Matthias, M. Reichling, J. Siegel, O. W. Kading, S. Petzoldt, H. Skurk, P. Bizenberger, E. Neske, “The influence of thermal diffusion on laser ablation of metal films,” Appl. Phys. A 58, 129–136 (1994).
[CrossRef]

S. Preuss, E. Matthias, M. Stuke, “Subpicosecond UV-laser ablation of Ni films,” Appl. Phys. A 59, 79–82 (1994).
[CrossRef]

T. Götz, M. Stuke, “Short-pulse UV laser ablation of solid and liquid metals: indium,” Appl. Phys. A 64, 539–543 (1997).
[CrossRef]

P. Simon, J. Ilhemann, “Machining of submicron structures on metals and semiconductors by ultrashort UV-laser pulses,” Appl. Phys. A 63, 505–508 (1996).
[CrossRef]

I. Zergioti, S. Mailis, N. A. Vainos, P. Papakonstantinou, C. Kalpouzos, C. P. Grigoropoulos, C. Fotakis, “Microdeposition of metal and oxide structures using ultrashort laser pulses,” Appl. Phys. A 66, 579–582 (1998).
[CrossRef]

C. Grivas, D. S. Gill, S. Mailis, L. Boutsikaris, N. A. Vainos, “Indium oxide thin-film holographic recorders grown via excimer laser reactive sputtering,” Appl. Phys. A 66, 201–204 (1998).
[CrossRef]

Appl. Surf. Sci. (1)

J. Ihlemann, B. Wolff-Rottke, “Excimer laser micromachining of inorganic dielectrics,” Appl. Surf. Sci. 106, 282–286 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

X. Liu, D. Du, G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997).
[CrossRef]

J. Appl. Phys. (5)

P. P. Pronko, S. K. Dutta, D. Du, R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233–6240 (1995).
[CrossRef]

T. D. Bennett, C. Grigoropoulos, D. J. Krajnovich, “Near-threshold laser sputtering of gold,” J. Appl. Phys. 77, 849–864 (1995).
[CrossRef]

J. Bohandy, B. F. Kim, F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60, 1538–1539 (1986).
[CrossRef]

J. Bohandy, B. F. Kim, F. J. Adrian, A. N. Jette, “Metal deposition at 532 nm using a laser transfer technique,” J. Appl. Phys. 63, 1158–1162 (1988).
[CrossRef]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, J. Perriere, “Laser-induced forward transfer of high-Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66, 457–459 (1989).
[CrossRef]

Mater. Manuf. Processes (1)

E. Fogarassy, C. Fuchs, S. de Unamuno, F. Kerherve, J. Perriere, “High Tc superconducting thin film deposition by laser induced forward transfer,” Mater. Manuf. Processes 7, 31–51 (1992).
[CrossRef]

Opt. Eng. (2)

G. J. Swanson, W. B. Veldkamp, “Diffractive optical elements for use in infrared systems,” Opt. Eng. 28, 605–608 (1989).
[CrossRef]

E. Pawlowski, B. Kuhlow, “Antireflection-coated diffractive optical elements fabricated by thin-film deposition,” Opt. Eng. 33, 3537–3546 (1994).
[CrossRef]

Other (3)

L. Ristic, ed., Sensor Technology and Devices (Artech House, Boston, 1994).

T. Yatagai, H. C. Bolstad, H. Hashizume, S. Kobayashi, M. Seki, “Optimization of gradient-index computer-generated hologram,” in Computer and Optically Formed Holographic Optics, I. Cindrich, S. H. Lee, eds., Proc. SPIE1211, 191–195 (1990).
[CrossRef]

J. W. Goodman, ed., International Trends in Optics (Academic, London, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental layout for direct excimer-laser microfabrication. Inset: (a) microetching, (b) microprinting, (c) microprinting on optical fibers.

Fig. 2
Fig. 2

Etching rate versus excimer-laser fluence, ED, for (a), PMMA; (b), polycarbonate; (c), aluminum; (d), stainless steel, for 500-fs (solid circles) and 20-ns (open circles) laser pulses at 248 nm. Arrows indicate the single-pulse threshold fluence: solid arrow, 500-fs pulses; dot–dash arrow, 20-ns pulses.

Fig. 3
Fig. 3

Fanout element etched in PMMA: (a) SEM picture, (b) AFM image, (c) hologram reconstruction at 633 nm.

Fig. 4
Fig. 4

(a) Generic-pattern CGH structure etched on polyimide and (b) CGH reconstruction of an alphanumeric sentence at 633 nm.

Fig. 5
Fig. 5

(a) Raster microprinted Cr on a glass CGH pattern and (b) CGH reconstruction at 633 nm.

Fig. 6
Fig. 6

Computer-generated holographic pattern of amorphous/polycrystalline InO x on glass.

Fig. 7
Fig. 7

(a), (b) Closeup views of gratinglike structure developed on D-type optical fiber revealing submicrometer features and (c) 2-µm features periodically deposited on a 35-µm-diameter optical fiber.

Metrics