Abstract

A solid immersion lens (SIL) has the advantage of easily decreasing the spot size for high data density in optical recording. To accurately obtain the optical tunneling effect for a high-N.A. SIL, we calculated the optical tunneling beam characteristics, using electromagnetic theory. Tunneling beam spot-size dependence on polarization direction and energy-transfer efficiency are also clearly shown.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990).
    [Crossref] [PubMed]
  2. T. Nakano, S. Kawata, “Evanescent field microscope for super-resolving infrared micro-spectroscopy,” J. Spectros. Soc. Jpn. 41, 377–384 (1992) (in Japanese).
    [Crossref]
  3. S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
    [Crossref]
  4. B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
    [Crossref]
  5. H. J. Mamin, B. D. Terris, D. Rugar, “Optical data storage using a solid immersion lens,” in Proceedings of the MagnetoOptical Recording International Symposium ’94, J. Magn. Soc. Jpn.19 (Suppl. 1), 409–412 (1995).
  6. M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.
  7. H. Ooki, “Exact point spread function of an aplanatic optical system,” Optik 80, 107–112 (1988).
  8. M. Mansuripur, “Certain computational aspects of vector diffraction problems,” J. Opt. Soc. Am. A 6, 786–805 (1989).
    [Crossref]
  9. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
    [Crossref]

1994 (1)

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

1992 (1)

T. Nakano, S. Kawata, “Evanescent field microscope for super-resolving infrared micro-spectroscopy,” J. Spectros. Soc. Jpn. 41, 377–384 (1992) (in Japanese).
[Crossref]

1990 (2)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

J. M. Guerra, “Photon tunneling microscopy,” Appl. Opt. 29, 3741–3752 (1990).
[Crossref] [PubMed]

1989 (1)

1988 (1)

H. Ooki, “Exact point spread function of an aplanatic optical system,” Optik 80, 107–112 (1988).

1959 (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Birukawa, M.

M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.

Guerra, J. M.

Itoh, Y.

M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.

Kawata, S.

T. Nakano, S. Kawata, “Evanescent field microscope for super-resolving infrared micro-spectroscopy,” J. Spectros. Soc. Jpn. 41, 377–384 (1992) (in Japanese).
[Crossref]

Kino, G. S.

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Mamin, H. J.

H. J. Mamin, B. D. Terris, D. Rugar, “Optical data storage using a solid immersion lens,” in Proceedings of the MagnetoOptical Recording International Symposium ’94, J. Magn. Soc. Jpn.19 (Suppl. 1), 409–412 (1995).

Mamin, H. J. J.

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Mansfield, S. M.

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

Mansuripur, M.

Nakano, T.

T. Nakano, S. Kawata, “Evanescent field microscope for super-resolving infrared micro-spectroscopy,” J. Spectros. Soc. Jpn. 41, 377–384 (1992) (in Japanese).
[Crossref]

Ooki, H.

H. Ooki, “Exact point spread function of an aplanatic optical system,” Optik 80, 107–112 (1988).

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Rugar, D.

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

H. J. Mamin, B. D. Terris, D. Rugar, “Optical data storage using a solid immersion lens,” in Proceedings of the MagnetoOptical Recording International Symposium ’94, J. Magn. Soc. Jpn.19 (Suppl. 1), 409–412 (1995).

Studenmund, W. R.

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

Suzuki, T.

M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.

Tanaka, Y.

M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.

Terris, B. D.

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

H. J. Mamin, B. D. Terris, D. Rugar, “Optical data storage using a solid immersion lens,” in Proceedings of the MagnetoOptical Recording International Symposium ’94, J. Magn. Soc. Jpn.19 (Suppl. 1), 409–412 (1995).

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

S. M. Mansfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57, 2615–2616 (1990).
[Crossref]

B. D. Terris, H. J. J. Mamin, D. Rugar, W. R. Studenmund, G. S. Kino, “Near-field optical data storage using a solid immersion lens,” Appl. Phys. Lett. 65, 388–390 (1994).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Spectros. Soc. Jpn. (1)

T. Nakano, S. Kawata, “Evanescent field microscope for super-resolving infrared micro-spectroscopy,” J. Spectros. Soc. Jpn. 41, 377–384 (1992) (in Japanese).
[Crossref]

Optik (1)

H. Ooki, “Exact point spread function of an aplanatic optical system,” Optik 80, 107–112 (1988).

Proc. R. Soc. London Ser. A (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[Crossref]

Other (2)

H. J. Mamin, B. D. Terris, D. Rugar, “Optical data storage using a solid immersion lens,” in Proceedings of the MagnetoOptical Recording International Symposium ’94, J. Magn. Soc. Jpn.19 (Suppl. 1), 409–412 (1995).

M. Birukawa, Y. Itoh, Y. Tanaka, T. Suzuki, “The optical design for near field optical approach using solid immersion lens for high density recording,” in Proceedings of the Joint Magneto-Optical Recording International Symposium (MORIS)/International Symposium on Optical Memory (ISOM ’97) (Business Center for Academic Societies Japan, Tokyo, 1997), pp. 232–233.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of optics, disk structure, and a coordinate system. The collimated linearly polarized direction of an incident beam is the x direction.

Fig. 2
Fig. 2

Solid immersion lens. (a) Hemisphere SIL, (b) super hemisphere SIL.

Fig. 3
Fig. 3

Beam-spot profile with an electric intensity for x and y directions. The beam spot is on the surface of the MO layer, z = d 1 + d 2.

Fig. 4
Fig. 4

Transmission coefficient for angle of incidence.

Fig. 5
Fig. 5

Electric intensity distribution for the total wave, the far-field wave component, and the evanescent wave component for (a) x direction and (b) y direction. The beam spot is on the surface of the MO layer, z = d 1 + d 2. The optics parameters are the same as in Fig. 3.

Fig. 6
Fig. 6

Optical tunneling electric energy on the MO surface. The energy is normalized by the incident electric energy. The optics parameters are the same as in Fig. 3.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

Eincx, y, z=C 0θt02πξ, η, ζexpjk1s1xx+s1yy+s1zzsin θ1dθ1dϕ,
Hincx, y, z=-jωμ0 ×Eincx, y, z=Cn10θt02πs1yζ-s1zη, s1zξ-s1xζ, s1xη-s1yξexpjk1s1xx+s1yy+s1zzsin θ1dθ1dϕ,
s1x=sin θ1 cosϕ, s1y=sin θ1 sin ϕ, s1z=cos θ1.
ξ=fθ1, ϕcos θ11/2cos θ1 + sin2 ϕ1 - cos θ1,
η=fθ1, ϕcos θ11/2cos θ1-1sin ϕ cos ϕ,
ζ=-fθ1, ϕcos θ11/2 sin θ1 cos ϕ,
Emx, y, z=C 0θt02π(tmx, tmy, tmzexpjkmsmxx+smyy+smzz-zm+rmx, rmy, rmzexpjkmsmxx+smyy-smzz-zm)sin θ1dθ1dϕ,
Hmx, y, z=-jωμ0 ×Emx, y, z=Cnm0θt02πsmytmz-smztmy,smztmx-smxtmz, smxtmy-smytmx×expjkmsmxx+smyy+smzz-zm×sin θ1dθ1dϕ+Cnm0θt02πsmyrmz+smzrmy, -smzrmx-smxrmz,smxrmy-smyrmxexpjkmsmxx+smyy-smzz-zmsin θ1dθ1dϕ,
smx=sin θm cos ϕ, smy=sin θm sin ϕ, smz=cos θm.
t1x=ξ,  t1y=η,  t1z=ζ,  r4x=r4y=r4z=0.
tmx expβm+rmx exp-βm=tm+1x+rm+1x,
tmy expβm+rmy exp-βm=tm+1y+rm+1y,
nm(tmz expβm+rmz exp-βmsin θm sin ϕ-tmy expβm-rmy exp-βmcos θm)=nm+1tm+1z+rm+1zsin θm+1 sin ϕ-tm+1y-rm+1ycos θm+1,
nm(tmx expβm-rmx exp-βmcos θm-tmz expβm+rmz exp-βmsin θm cos ϕ)=nm+1tm+1x-rm+1xcos θm+1-tm+1z+rm+1z×sin θm+1 cos ϕ,  m=13,
βm=jkmDmcos θm, D1=0,D2=d1, D3=d2.
tmx sin θm cos ϕ+tmy sin θm sin ϕ+tmz cos θm=0,m=24,
rmx sin θm cos ϕ+rmy sin θm sin ϕ-rmz cos θm=0,m=13.
sin θm=sinψm+jκm=nm-1/nmsin θm-1,m=24.

Metrics