Abstract

We present results from a system that shows that multimode fibers can be used for both the input and the output of a free-space optical system. The system consists of plastic microlenses integrated with plastic optomechanical components that are suitable for low-cost fabrication and assembly. Such a system opens up opportunities to construct large repeaters and switches for multigigabit ethernet applications by integration with two-dimensional arrays of optoelectronic devices. We demonstrate a 2.5-Gbit/s transmission rate by using commercial vertical-cavity surface-emitting lasers coupled to 62.5-µm core fibers. We consider the design constraints and the capabilities of custom optical modules suitable for mass production.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ethernet standard 802.3 and gigabit ethernet standard P802.3z (Institute of Electrical and Electronics Engineers, New York).
  2. F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.
  3. D. J. Reiley, J. M. Sasian, “Optical design of a free-space photonic switching system,” Appl. Opt. 36, 4497–4504 (1997).
    [CrossRef] [PubMed]
  4. S. Araki, M. Kajita, K. Kasahara, K. Kubota, K. Kurihara, I. Redmond, E. Schenfeld, T. Suzaki, “Experimental free-space optical network for massively parallel computers,” Appl. Opt. 35, 1269–1281 (1996).
    [CrossRef] [PubMed]
  5. C. P. Barrett, P. Blair, G. S. Buller, D. T. Neilson, B. Robertson, E. C. Smith, M. R. Taghizadeh, A. C. Walker, “Components for implementation of free-space optical crossbars,” Appl. Opt. 35, 6934–6944 (1996).
    [CrossRef] [PubMed]
  6. D. T. Neilson, E. Schenfeld, “Plastic modules for free-space optical interconnects,” Appl. Opt. 37, 2944–2952 (1998).
    [CrossRef]
  7. A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Select. Topics Quantum Electron. 2, 55–76 (1996).
    [CrossRef]
  8. A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, S. P. Hui, B. Tseng, L. M. F. Chirovsky, R. Leibenguth, D. Kossives, D. Dahringer, L. A. D’Asaro, F. Kiamilev, G. F. Aplin, R. G. Rozier, D. A. B. Miller, “Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon complementary-metal-oxide-semiconductor (CMOS) circuits,” Appl. Opt. 35, 2439–2448 (1996).
    [CrossRef] [PubMed]
  9. A. E. Siegman, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
    [CrossRef]
  10. A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
    [CrossRef]

1998 (1)

1997 (1)

1996 (4)

1993 (1)

A. E. Siegman, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

1991 (1)

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

Aplin, G. F.

Araki, S.

Barrett, C. P.

Beckman, M. G.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Blair, P.

Bucholz, D. B.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Buller, G. S.

Chirovsky, L. M. F.

Cloonan, T. J.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

D’Asaro, L. A.

Dahringer, D.

Ford, J. E.

Goossen, K. W.

Hinterlong, S. J.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Hui, S. P.

Kajita, M.

Kasahara, K.

Kiamilev, F.

Kossives, D.

Krishnamoorthy, A. V.

Kubota, K.

Kurihara, K.

Leibenguth, R.

Lentine, A. L.

A. V. Krishnamoorthy, J. E. Ford, K. W. Goossen, J. A. Walker, A. L. Lentine, S. P. Hui, B. Tseng, L. M. F. Chirovsky, R. Leibenguth, D. Kossives, D. Dahringer, L. A. D’Asaro, F. Kiamilev, G. F. Aplin, R. G. Rozier, D. A. B. Miller, “Photonic page buffer based on GaAs multiple-quantum-well modulators bonded directly over active silicon complementary-metal-oxide-semiconductor (CMOS) circuits,” Appl. Opt. 35, 2439–2448 (1996).
[CrossRef] [PubMed]

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Lohmann, A. W.

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

McCormick, F. B.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Miller, D. A. B.

Morrison, R. L.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Neilson, D. T.

Novotny, R. A.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Redmond, I.

Reiley, D. J.

Robertson, B.

Rozier, R. G.

Sasian, J. M.

D. J. Reiley, J. M. Sasian, “Optical design of a free-space photonic switching system,” Appl. Opt. 36, 4497–4504 (1997).
[CrossRef] [PubMed]

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Schenfeld, E.

Siegman, A. E.

A. E. Siegman, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

Smith, E. C.

Suzaki, T.

Taghizadeh, M. R.

Tseng, B.

Walker, A. C.

Walker, J. A.

Wojcik, M. J.

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Appl. Opt. (5)

IEEE J. Quantum Electron. (1)

A. E. Siegman, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

IEEE J. Select. Topics Quantum Electron. (1)

A. V. Krishnamoorthy, D. A. B. Miller, “Scaling optoelectronic-VLSI circuits into the 21st century: a technology roadmap,” IEEE J. Select. Topics Quantum Electron. 2, 55–76 (1996).
[CrossRef]

Opt. Commun. (1)

A. W. Lohmann, “Image formation of dilute arrays for optical information processing,” Opt. Commun. 86, 365–370 (1991).
[CrossRef]

Other (2)

Ethernet standard 802.3 and gigabit ethernet standard P802.3z (Institute of Electrical and Electronics Engineers, New York).

F. B. McCormick, A. L. Lentine, R. L. Morrison, J. M. Sasian, T. J. Cloonan, R. A. Novotny, M. G. Beckman, M. J. Wojcik, S. J. Hinterlong, D. B. Bucholz, “Free-space optical switching using fet-seed smart pixel arrays,” in Optical Computing: Proceedings of the International Conference, B. S. Wherrett, P. Chavel, eds. (Institute of Physics, Bristol, 1995), pp. xix + 660, 131–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Propagation of the beams through the demonstration optical system.

Fig. 2
Fig. 2

Photograph of the module used for the free-space relay. The acrylic microlenses are attached to the block with index-matching optical cement.

Fig. 3
Fig. 3

Experimental setup that uses VCSEL’s and multimode-fiber bundles. RX, receiver; scope, oscilloscope; PRBS, pseudo-random-bit sequence.

Fig. 4
Fig. 4

Four-stage optical relay system for beams from multimode fibers.

Fig. 5
Fig. 5

Eye diagram for a 2.5-Gbit/s nonreturn-to-zero 223 - 1 pseudo-random-bit sequence.

Fig. 6
Fig. 6

Relative coupling as a function of the lateral displacement of a lensed fiber. The maximum cross talk is -18 dB below the maximum coupling.

Fig. 7
Fig. 7

Propagation of pseudo-Gaussian modes through the system modules. The shaded areas represent acrylic plastic. The profiles correspond to a 62.5-µm fiber (left), a 50-µm fiber (middle), and a 12-µm-diameter single-mode VCSEL (right).

Fig. 8
Fig. 8

Coherent and incoherent images of a 50-µm-diameter source that result from a system containing one relay stage.

Fig. 9
Fig. 9

Coupling efficiency as a function of the number of relay stages for a fiber modeled as a coherent and an incoherent source.

Fig. 10
Fig. 10

Design of the array-expander system. The design utilizes two microlens arrays and two aspheric surfaces to permit the changes of the pitch and the NA of the beams.

Tables (3)

Tables Icon

Table 1 Optical Description of the Relay-Lens Module

Tables Icon

Table 2 Optical Description of the Coupling Lens that Matches the Beams to the Relay Module

Tables Icon

Table 3 Surface-by-Surface Specification of the Array-Expander System

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

fR=zR=πdW24λM2=πdL28λM2,

Metrics