Abstract

Electronic spectral holography in the form developed by Shih [Ph.D. dissertation, University Microfilms, Ann Arbor, Mich. (1995)] is adapted to various applications, including optical coherence tomography in scattering media, contouring of surfaces, and optical fiber mode examination.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
    [CrossRef]
  2. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
    [CrossRef]
  3. A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
    [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  5. W. Pinkl, M. Esslinger, A. F. Fercher, “One- and two-dimensional spectral length measurement,” in Lasers in Ophthalmology IV, R. Birngruber, F. Fercher, P. Sourdille, eds., SPIE2930, 207–215 (1996).
    [CrossRef]
  6. F. Lexer, C. K. Hitzenberger, A. F. Fercher, M. Kulhavy, “Wavelength-tuning Interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
    [CrossRef]
  7. J. Schwider, L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19, 995–997 (1994).
    [CrossRef] [PubMed]
  8. S. R. Chen, E. A. Swanson, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef]
  9. P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
    [CrossRef]
  10. P. C. Sun, Y. Mazurenko, Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1170 (1997).
    [CrossRef]
  11. H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
    [CrossRef]
  12. E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.
  13. M. P. Shih, “Electronic holography with a broad spectrum laser for time gated imaging through highly scattering media,” Ph.D. dissertation (University Microfilms, Ann Arbor, Michigan, 1995).
  14. M. P. Shih, “Spectral holography for coherence-gated imaging,” Opt. Lett. 24, 52–54 (1999).
    [CrossRef]
  15. M. P. Shih, “Spectral holography for imaging through scattering media,” Appl. Opt. 38, 743–750 (1999).
    [CrossRef]
  16. K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
    [CrossRef] [PubMed]
  17. Y. N. Denisyuk, D. I. Staselko, R. R. Herks, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” presented at the Conference on Applications of Holography, Besançon, France, 21 July 1970.
  18. N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121–123 (1978).
    [CrossRef] [PubMed]

1999 (2)

1997 (3)

1995 (2)

P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1994 (1)

1992 (2)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

1990 (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

1989 (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

1978 (1)

Abramson, N.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

N. Abramson, “Light-in-flight recording by holography,” Opt. Lett. 3, 121–123 (1978).
[CrossRef] [PubMed]

Arons, E.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Bjelkhagen, H.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Chang, W. S. C.

Chen, H.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Chen, S. R.

Chen, Y.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Clay, K.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Denisyuk, Y. N.

Y. N. Denisyuk, D. I. Staselko, R. R. Herks, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” presented at the Conference on Applications of Holography, Besançon, France, 21 July 1970.

Dilworth, D.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Draper, R.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Esslinger, M.

W. Pinkl, M. Esslinger, A. F. Fercher, “One- and two-dimensional spectral length measurement,” in Lasers in Ophthalmology IV, R. Birngruber, F. Fercher, P. Sourdille, eds., SPIE2930, 207–215 (1996).
[CrossRef]

Fainman, Y.

Fercher, A. F.

F. Lexer, C. K. Hitzenberger, A. F. Fercher, M. Kulhavy, “Wavelength-tuning Interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

W. Pinkl, M. Esslinger, A. F. Fercher, “One- and two-dimensional spectral length measurement,” in Lasers in Ophthalmology IV, R. Birngruber, F. Fercher, P. Sourdille, eds., SPIE2930, 207–215 (1996).
[CrossRef]

Herks, R. R.

Y. N. Denisyuk, D. I. Staselko, R. R. Herks, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” presented at the Conference on Applications of Holography, Besançon, France, 21 July 1970.

Hitzenberger, C. K.

F. Lexer, C. K. Hitzenberger, A. F. Fercher, M. Kulhavy, “Wavelength-tuning Interferometry of intraocular distances,” Appl. Opt. 36, 6548–6553 (1997).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kulhavy, M.

Leaird, D. E.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Leith, E.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Lexer, F.

Lopez, J.

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Mazurenko, Y.

Mazurenko, Y. T.

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

Paek, E. G.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

Pinkl, W.

W. Pinkl, M. Esslinger, A. F. Fercher, “One- and two-dimensional spectral length measurement,” in Lasers in Ophthalmology IV, R. Birngruber, F. Fercher, P. Sourdille, eds., SPIE2930, 207–215 (1996).
[CrossRef]

Reitze, D. H.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

Schwider, J.

Serafin, J.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Shih, M.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

Shih, M. P.

M. P. Shih, “Spectral holography for coherence-gated imaging,” Opt. Lett. 24, 52–54 (1999).
[CrossRef]

M. P. Shih, “Spectral holography for imaging through scattering media,” Appl. Opt. 38, 743–750 (1999).
[CrossRef]

M. P. Shih, “Electronic holography with a broad spectrum laser for time gated imaging through highly scattering media,” Ph.D. dissertation (University Microfilms, Ann Arbor, Michigan, 1995).

Spears, K. G.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Staselko, D. I.

Y. N. Denisyuk, D. I. Staselko, R. R. Herks, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” presented at the Conference on Applications of Holography, Besançon, France, 21 July 1970.

Sun, P. C.

P. C. Sun, Y. Mazurenko, Y. Fainman, “Femtosecond pulse imaging: ultrafast optical oscilloscope,” J. Opt. Soc. Am. A 14, 1159–1170 (1997).
[CrossRef]

P. C. Sun, Y. Mazurenko, W. S. C. Chang, P. K. L. Yu, Y. Fainman, “All optical parallel-to-serial conversion by holographic spatial-to-temporal frequency encoding,” Opt. Lett. 20, 1728–1730 (1995).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

Swanson, E. A.

Weiner, A. M.

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Spectral holography of shaped femtosecond pulses,” Opt. Lett. 17, 224–226 (1992).
[CrossRef] [PubMed]

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

Yu, P. K. L.

Zhou, L.

Zhu, X.

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

Y. T. Mazurenko, “Holography of wave packets,” Appl. Phys. B 50, 101–114 (1990).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. M. Weiner, D. E. Leaird, D. H. Reitze, E. G. Paek, “Femtosecond spectral holography,” IEEE J. Quantum Electron. 28, 2251–2261 (1992).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

K. G. Spears, J. Serafin, N. Abramson, X. Zhu, H. Bjelkhagen, “Chromo-coherent imaging for medicine,” IEEE Trans. Biomed. Eng. 36, 1210–1214 (1989).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Lett. (6)

Other (5)

Y. N. Denisyuk, D. I. Staselko, R. R. Herks, “On the effect of time and spatial coherence of radiation source on the image produced by a hologram,” presented at the Conference on Applications of Holography, Besançon, France, 21 July 1970.

H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, M. Shih, P. C. Sun, E. Arons, R. Draper, K. Clay, “Comparison of various holographic techniques for imaging through biological tissue,” in Holographic Imaging and Materials, T. H. Jeong, ed., Proc. SPIE2043, 272–277 (1994).
[CrossRef]

E. Arons, H. Chen, K. Clay, D. Dilworth, R. Draper, J. Lopez, E. Leith, M. Shih, P. C. Sun, “New holographic methods for improved imagery through scattering media,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 239–243.

M. P. Shih, “Electronic holography with a broad spectrum laser for time gated imaging through highly scattering media,” Ph.D. dissertation (University Microfilms, Ann Arbor, Michigan, 1995).

W. Pinkl, M. Esslinger, A. F. Fercher, “One- and two-dimensional spectral length measurement,” in Lasers in Ophthalmology IV, R. Birngruber, F. Fercher, P. Sourdille, eds., SPIE2930, 207–215 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Diagram of the basic spectral fringe formation process.

Fig. 2
Fig. 2

Schematic of the process to derive Eqs. (1) and (2).

Fig. 3
Fig. 3

Schematic diagram of the interferometer that we used to obtain the temporal impulse response of fibers: modified Mach–Zehender interferometer to record lateral and depth dimension. The dye laser is pumped with an argon laser (580–640 nm). SF, spatial filter; BS1, cube beam splitter; BC1, BC2, beam–fiber couplers; M1, M2, mirrors mounted upon the same translation stage; BS2, combiner cube; DG, diffraction grating (900 lines/mm); L1, imaging lens; PH, pinhole (small aperture, approximately 1–2-mm diameter). Cooled CCD camera (Princeton Instruments): 256 × 256 pixels, 16 bits/pixel.

Fig. 4
Fig. 4

Results obtained with a single-mode optical fiber: (a) spectral hologram of the light transmitted by the fiber, (b) temporal impulse response for different spectral bounds, (c) spectral hologram of the light propagating through free space, (d) temporal impulse response for free space. The zero order (dc term) in the Fourier-transformed images was masked.

Fig. 5
Fig. 5

Schematic diagram of the modified Mach–Zehender interferometer to record lateral and depth dimension. The dye laser is pumped with an argon laser (580–640 nm). BS1, variable beam splitter; M1, M2, mirrors; P1, P2, prisms, with P2 mounted upon a motorized translation stage; SF1, SF2, spatial filters; L1, L2, afocal system; unlabeled ovals, collimating lenses; S1, S2, slits; BS3, cube beam splitter used as a beam combiner; BS2, plate beam splitter; DG, diffraction grating (900 lines/mm); cooled CCD camera.

Fig. 6
Fig. 6

(a) Object comprising three plastic tapes arranged as a stair stack. The back surface of the tape has a metallic layer. (b) A ground-glass plate covering the previous object is used to test the system with diffuse light.

Fig. 7
Fig. 7

256 × 256 spectral hologram recorded by the CCD camera. Horizontal axis, the λ coordinate; vertical axis, the object height coordinate. 1D, one-dimensional.

Fig. 8
Fig. 8

Reconstruction (±1st orders) of three holograms corresponding to the same object [Fig. 6(a)] for three different delay times. Horizontal axis (128 pixels), depth or time of light arrival; vertical axis, the height coordinate of the object. The central peak (0 order) that arises from the hologram background has been masked.

Fig. 9
Fig. 9

Hologram and reconstruction of the object depicted in Fig. 6(b).

Fig. 10
Fig. 10

Images obtained with a thin cover glass plate used as the object. (a), (b) Different delays.

Fig. 11
Fig. 11

Schematic diagram of the setup used to record two-dimensional range images: S, 1-mm-wide slit; BS, cube beam splitter; DG, diffraction grating; CCD camera. The object is mounted in a stage that permits axial and lateral translation.

Fig. 12
Fig. 12

(a) Reconstruction of a hologram in a particular position of the lateral translation stage. The object is a coin (U.S. quarter) spray painted flat white. (b) Surface plot of the final result. (c) Same as in (b), plotted as a gray-scale image. The gray levels in (b) and (c) represent different range values.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

sin θ=sin θ0+Δθ cos θ0=fgλ0+Δθ1-fg2λ021/2,
fgλ-λ0=x1-fg2λ021/2D,
Δλ=λ1-λ2=Δl 1n+1/2-1n+3/2Δl/n2λ2/Δl.
Δx=fgDΔλ1-fg2λ021/2=fgDλ2Δl1-fg2λ021/2.
fsf=1Δx=1-fg2λ021/2fgDΔlλ2=1-fg2λ021/2fgDΔlλ0+λ-λ02=1-fg2λ021/2fgD Δl1λ02-2λ-λ0λ03.
1-fg2λ021/3fgDΔlλ02-2Δl1-fg2λ02fg2D2λ03 x=fsfmean+γx.
γ=-fsfmean1-2λ-λ0λ0.
fsfmeanx/Δx=fsfmeanλ2λ-λ0Δl.
λ-λ0min=λ0λ0/2Δl1/2.

Metrics