Abstract

The diffraction-limited spot size limits the optical disk storage capacity and microscopic resolution. We describe a technique to shape a focused Gaussian beam into a superresolving beam by using a diffractive optical element fabricated by laser-assisted chemical etching. The focused shaped beam has a smaller width and a longer depth of focus than a similarly focused Gaussian beam. Using the diffraction-limited shaped beam along with threshold writing, we achieved a written pit size of less than 0.33 µm at a 695-nm laser wavelength, compared with a 0.7-µm focused Gaussian spot size (full width at e -2 of the peak) with the same focusing lens. The energy conversion efficiency for the beam shaping was ∼81%.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.
  2. T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996).
    [CrossRef]
  3. S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
    [CrossRef]
  4. W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
    [CrossRef]
  5. K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
    [CrossRef]
  6. I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
    [CrossRef]
  7. S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
    [CrossRef]
  8. B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
    [CrossRef]
  9. K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
    [CrossRef]
  10. I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
    [CrossRef] [PubMed]
  11. D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
    [CrossRef]
  12. E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
    [CrossRef]
  13. Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).
  14. K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 1 37, 2274–2278 (1998).
    [CrossRef]
  15. G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
    [CrossRef]
  16. I. J. Cox, C. J. R. Sheppard, T. Wilson, “Reappraisal of arrays of concentric annuli as superresolving filters,” J. Opt. Soc. Am. 72, 1287–1291 (1982).
    [CrossRef]
  17. D. G. Crowe, “Increasing the bit packing density in diffraction limited optical disk storage systems,” Appl. Opt. 23, 378–379 (1984).
    [CrossRef] [PubMed]
  18. Z. S. Hegedus, “Annular pupil arrays—applications to confocal scanning,” Opt. Acta 32, 815–826 (1985).
    [CrossRef]
  19. Y. Yamanaka, Y. Hirose, H. Fujii, K. Kubota, “High density recording by superresolution in an optical disk memory system,” Appl. Opt. 29, 3046–3051 (1990).
    [CrossRef] [PubMed]
  20. T. Tanabe, “Superresolution readout system with electrical equalization for optical disks,” Appl. Opt. 34, 6769–6774 (1995).
    [CrossRef] [PubMed]
  21. H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
    [CrossRef]
  22. H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
    [CrossRef]
  23. T. R. M. Sales, G. M. Morris, “Diffractive superresolution elements,” J. Opt. Soc. Am. A 14, 1637–1646 (1997).
    [CrossRef]
  24. T. R. M. Sales, G. M. Morris, “Fundamental limits of optical superresolution,” Opt. Lett. 22, 582–584 (1997).
    [CrossRef] [PubMed]
  25. J. A. Davis, D. M. Cottrell, C. A. Maley, M. R. Crivello, “Subdiffraction-limited focusing lens,” Appl. Opt. 33, 4128–4131 (1994).
    [CrossRef] [PubMed]
  26. Z. Andreic, “Superresolution performance of an absorbing glass positive lens element,” Appl. Opt. 36, 4354–4357 (1997).
    [CrossRef]
  27. C. J. R. Sheppard, G. Calvert, M. Wheatland, “Focal distribution for superresolving Toraldo filters,” J. Opt. Soc. Am. A 15, 849–854 (1998).
    [CrossRef]
  28. G. P. Karman, M. W. Beijersbergen, A. V. Duiji, D. Bouwmeester, J. P. Woerdman, “Airy pattern reorganization and subwavelength structure in a focus,” J. Opt. Soc. Am. A 15, 884–899 (1998).
    [CrossRef]
  29. J. Rosen, R. Salik, A. Yariv, “Pseudo-nondiffracting beams generated by radial harmonic functions,” J. Opt. Soc. Am. A 12, 2446–2457 (1995).
    [CrossRef]
  30. M. R. Wang, H. Su, “Multilevel diffractive microlens fabrication by one-step laser-assisted chemical etching upon high-energy-beam-sensitive glass,” Opt. Lett. 23, 876–878 (1998).
    [CrossRef]
  31. C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

1998 (4)

1997 (5)

1996 (2)

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996).
[CrossRef]

1995 (2)

1994 (1)

1993 (3)

H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
[CrossRef]

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
[CrossRef]

1992 (4)

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

1991 (1)

S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
[CrossRef]

1990 (1)

1985 (1)

Z. S. Hegedus, “Annular pupil arrays—applications to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

1984 (2)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

D. G. Crowe, “Increasing the bit packing density in diffraction limited optical disk storage systems,” Appl. Opt. 23, 378–379 (1984).
[CrossRef] [PubMed]

1982 (1)

1952 (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

Ando, H.

H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
[CrossRef]

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

Andou, T.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Andreic, Z.

Arnett, P. C.

T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996).
[CrossRef]

Beijersbergen, M. W.

Betzig, E.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Bouwmeester, D.

Calvert, G.

Carica, P. F.

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

Chang, C.-H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Chen, S.-C.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Cottrell, D. M.

Cox, I. J.

Crivello, M. R.

Crowe, D. G.

Davis, J. A.

Denk, W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Duiji, A. V.

Finn, P. L.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Fujii, H.

Fukumoto, A.

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Goto, K.

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 1 37, 2274–2278 (1998).
[CrossRef]

Guo, W. R.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Gyorgy, E. M.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Hashimoto, S.

S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
[CrossRef]

Hayashi, S.

Hegedus, Z. S.

Z. S. Hegedus, “Annular pupil arrays—applications to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

Hirose, Y.

Horigome, S.

M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.

Ichimura, I.

I. Ichimura, S. Hayashi, G. S. Kino, “High-density optical recording using a solid immersion lens,” Appl. Opt. 36, 4339–4348 (1997).
[CrossRef] [PubMed]

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Jacobs, B. A. J.

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

Jongelis, A. P. J.

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

Kaneko, M.

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Karman, G. P.

Kesteren, H. W. V.

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

Kino, G. S.

Kryder, M. H.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Kubota, K.

Lanz, M.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Liu, J. R.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Lu, Y. Y.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Maeda, F.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

Maesaka, A.

S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
[CrossRef]

Maley, C. A.

Mamin, H. J.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Mansfield, S. M.

McDaniel, T. W.

T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996).
[CrossRef]

Miyai, T.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Morris, G. M.

Muraoka, K.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Nakamura, J.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Ochiai, Y.

S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
[CrossRef]

Ojima, M.

M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.

Osato, K.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

S. M. Mansfield, W. R. Studenmund, G. S. Kino, K. Osato, “High-numerical-aperture lens system for optical storage,” Opt. Lett. 18, 305–307 (1993).
[CrossRef]

Ota, N.

M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.

Owa, H.

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Ping, H.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Pohl, D. W.

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

Rosen, J.

Rugar, D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Sabi, Y.

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Sales, T. R. M.

Salik, R.

Sheppard, C. J. R.

Shieh, D.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Studenmund, W. R.

Su, H.

Sugiyama, H.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Takahashi, M.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Takeshita, Y.

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

Tanabe, T.

Tanoue, K.

H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
[CrossRef]

Tatsuno, K.

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

Terao, M.

M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.

Terris, B. D.

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

Toraldo di Francia, G.

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

Trautman, J. K.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Tsai, D. P.

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Wang, M. R.

Watanabe, T.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

Wheatland, M.

Wilson, T.

Woerdman, J. P.

Wolfe, R.

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

Wu, C. K.

C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

Yamamoto, K.

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

Yamanaka, Y.

Yariv, A.

Yokota, T.

H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
[CrossRef]

Zefer, W. B.

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

D. W. Pohl, W. Denk, M. Lanz, “Optical stethoscopy: image recording with resolution λ/20,” Appl. Phys. Lett. 44, 651–653 (1984).
[CrossRef]

E. Betzig, J. K. Trautman, R. Wolfe, E. M. Gyorgy, P. L. Finn, M. H. Kryder, C.-H. Chang, “Near-field magneto-optics and high density data storage,” Appl. Phys. Lett. 61, 142–144 (1992).
[CrossRef]

B. D. Terris, H. J. Mamin, D. Rugar, “Near-field optical data storage,” Appl. Phys. Lett. 68, 141–143 (1996).
[CrossRef]

IBM J. Res. Dev. (1)

T. W. McDaniel, P. C. Arnett, “Optical data storage media,” IBM J. Res. Dev. 40, 311–330 (1996).
[CrossRef]

IEEE Trans. Magn. (1)

W. B. Zefer, A. P. J. Jongelis, B. A. J. Jacobs, H. W. V. Kesteren, P. F. Carica, “Magneto-optical recording in Co/Pt multilayer and GdTbFe-based disks at 820, 647 and 458-nm wavelengths,” IEEE Trans. Magn. 28, 2503–2505 (1992).
[CrossRef]

J. Appl. Phys. (1)

S. Hashimoto, A. Maesaka, Y. Ochiai, “Recording on Co/Pt magneto-optical disks using a 488-nm wavelength laser,” J. Appl. Phys. 70, 5133–5135 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (4)

Jpn. J. Appl. Phys. (2)

H. Ando, “Phase-shifting apodizer of three or more portions,” Jpn. J. Appl. Phys. 31, 557–567 (1992).
[CrossRef]

H. Ando, T. Yokota, K. Tanoue, “Optical head with annular phase-shifting apodizer,” Jpn. J. Appl. Phys. 32, 5269–5276 (1993).
[CrossRef]

Jpn. J. Appl. Phys. 1 (4)

K. Yamamoto, K. Osato, I. Ichimura, F. Maeda, T. Watanabe, “0.8-numerical-aperture two-element objective lens for the optical disk,” Jpn. J. Appl. Phys. 1 36, 456–459 (1997).
[CrossRef]

K. Tatsuno, M. Takahashi, K. Muraoka, H. Sugiyama, J. Nakamura, T. Andou, T. Miyai, “High storage density optical recording with a stable micro green second harmonic generation laser consisting of Nd:YVO4 and KTP,” Jpn. J. Appl. Phys. 1 31, 601–604 (1992).
[CrossRef]

I. Ichimura, Y. Sabi, Y. Takeshita, A. Fukumoto, M. Kaneko, H. Owa, “High density magneto-optical recording with a second-harmonic generation green laser,” Jpn. J. Appl. Phys. 1 32, 5312–5316 (1993).
[CrossRef]

K. Goto, “Proposal of ultrahigh density optical disk system using a vertical cavity surface emitting laser array,” Jpn. J. Appl. Phys. 1 37, 2274–2278 (1998).
[CrossRef]

Nuovo Cimento Suppl. (1)

G. Toraldo di Francia, “Super-gain antennas and optical resolving power,” Nuovo Cimento Suppl. 9, 426–435 (1952).
[CrossRef]

Opt. Acta (1)

Z. S. Hegedus, “Annular pupil arrays—applications to confocal scanning,” Opt. Acta 32, 815–826 (1985).
[CrossRef]

Opt. Lett. (3)

Other (3)

M. Terao, N. Ota, S. Horigome, M. Ojima, Fundamentals of Optical Memory (Corona, Tokyo, 1990), p. 51.

C. K. Wu, “High energy beam sensitive glasses,” U.S. patent5,285,517 (8February1994).

Y. Y. Lu, D. P. Tsai, W. R. Guo, S.-C. Chen, J. R. Liu, H. Ping, D. Shieh, “Ultrahigh-density optical recording using a scanning near-field optical microscope,” in Miniturized Systems with Micro-optics and Micromechanics III, M. Motamedi, R. Goering, eds., Proc. SPIE3276, 2444–2448 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the optical system for converting an incident Gaussian beam in plane I into a focused non-Gaussian beam in focal plane II of lens L.

Fig. 2
Fig. 2

Radial intensity distributions of the non-Gaussian beams with three ρ0 values. The focused Gaussian beam in focal plane II without phase filtering is shown for comparison.

Fig. 3
Fig. 3

Longitudinal intensity distributions of the non-Gaussian beam with three ρ0 values. The curves are normalized at the center intensity. The resultant beam profile at plane II for an unshaped Gaussian beam is also plotted for comparison. The calculations are based on the same incident Gaussian beam.

Fig. 4
Fig. 4

Three-dimensional intensity profile of the non-Gaussian beam with phase solution Eq. (3) and ρ0 = 0.37.

Fig. 5
Fig. 5

Two-dimensional intensity patterns of (a) the non-Gaussian beam and (b) the focused Gaussian beam in focal plane II.

Fig. 6
Fig. 6

Intensity distributions across the beam center in focal plane II (a) for the non-Gaussian beam and (b) for the focused Gaussian beam.

Fig. 7
Fig. 7

SEM image of the threshold-written patterns in the ion-exchanged layer of the HEBS glass for demonstration of high resolution.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Er=2π expjψ0jλf0a riEiriexpjϕriJ02πrriλfdri,
Iρ=4π2a4λ2f201 ρiEiρiexpjϕρiJ0ρρidρi2.
ϕρi=π1+signρi-ρ0/2.
η=0r1 2πrIrdr0a 2πriEi2ridri,
Er, z=2πa2 expjkz+2fjλf01 ρiEiρiexpjϕρi-jπa2ρi2z/λf2J0ρρidρi,

Metrics