Abstract

A fiberized optical coherence tomographic (OCT) system is modified to produce a confocal image similar to that produced by a scanning laser ophthalmoscope. Two possible configurations are presented, one that can deliver either an OCT or a confocal image and another that is capable of producing both the OCT and the confocal images simultaneously. Using the later configuration, we demonstrate such images from the retina in the living eye. The penalty in terms of performance reduction introduced into the optical coherence tomograph when integrated with a confocal receiver and the signal-to-noise ratio analysis for the different confocal receiver configurations are presented.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 438–450.
    [CrossRef]
  2. Data Sheets of the Scanning Laser Ophthalmoscope, G. Rodenstock Instruments GmbH, Postfach 1326, Heidelberg, Germany, (1996); Data Sheets of the Heidelberg Laser Scanning Systems, Heidelberg Engineering, GmbH, Heidelberg, Germany (1996).
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  4. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
    [CrossRef]
  5. B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
    [CrossRef] [PubMed]
  6. S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
    [CrossRef]
  7. Data sheets of Optical Coherence Tomography, Humphrey Instruments, 2992 Alvarado St., San Leandro, Calif. 94577 (1996).
  8. G. J. Tearney, B. E. Bouma, J. G. Fujimoto, “High-speed phase- and group-delay scanning with a grating-based phase control delay line,” Opt. Lett. 22, 1811–1813 (1997).
    [CrossRef]
  9. J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
    [CrossRef]
  10. A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
    [CrossRef] [PubMed]
  11. A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
    [CrossRef]
  12. A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.
  13. A. Gh. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
    [CrossRef]
  14. R. Juskaitis, T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
    [CrossRef]
  15. M. Kempe, W. Rudolph, E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13, 46–52 (1996).
    [CrossRef]
  16. T. Wilson, Confocal Microscopy (Academic, London, 1990).
  17. A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
    [CrossRef]
  18. P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
    [CrossRef]
  19. K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
    [CrossRef]
  20. R. H. Webb, G. W. Hughes, “Detectors for scanning video imagers,” Appl. Opt. 32, 6227–6235 (1993).
    [CrossRef] [PubMed]
  21. Nirvana balanced photodetector in 1997–1998 catalog, Vol. 8.2, New Focus, Inc., Santa Clara, Calif.
  22. P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).
  23. Safe Use of Lasers, ANSI, Z 136.1 (American National Standards Institute, New York, 1986).
  24. R. Ulrich, S. C. Rashleigh, “Beam-to-fiber coupling with low standing wave ratio,” Appl. Opt. 19, 2453–2456 (1980).
    [CrossRef] [PubMed]
  25. K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
    [CrossRef]
  26. T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 11, pp. 113–126.
    [CrossRef]
  27. T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic, San Diego, Calif., 1996).
  28. F. C. Delori, K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1061–1077 (1989).
    [CrossRef] [PubMed]
  29. A. W. Dreher, J. F. Bille, R. N. Weinreb, “Active optical depth resolution improvement of the laser tomographic scanner,” Appl. Opt. 28, 804–808 (1989).
    [CrossRef] [PubMed]
  30. J. Z. Liang, D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873–2883 (1997).
    [CrossRef]
  31. S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
    [CrossRef] [PubMed]
  32. W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
    [CrossRef]

1998

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

A. Gh. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
[CrossRef]

A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

A. M. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express 3, 219–229 (1998).
[CrossRef] [PubMed]

1997

1996

1995

1994

R. Juskaitis, T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
[CrossRef]

1993

1992

S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
[CrossRef]

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[CrossRef] [PubMed]

1990

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

1989

1980

1974

P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Baney, D. M.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Bille, J. F.

Bleuler, H.

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

Boppart, S. A.

Bouma, B.

Bouma, B. E.

Brezinski, M. E.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Conradi, J. J.

P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Corle, T. R.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic, San Diego, Calif., 1996).

Delori, F. C.

Dobre, G. M.

A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

Dreher, A. W.

Fitzke, F.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

B. Bouma, G. J. Tearney, S. A. Boppart, M. R. Hee, M. E. Brezinski, J. G. Fujimoto, “High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al2O3 laser source,” Opt. Lett. 20, 1486–1488 (1995).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Himeno, A.

K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hughes, G. W.

Izatt, J. A.

Jackson, D. A.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

A. Gh. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[CrossRef]

A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

Juskaitis, R.

R. Juskaitis, T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
[CrossRef]

Kempe, M.

Kimura, S.

Kino, G. S.

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic, San Diego, Calif., 1996).

Kulkarni, M. D.

Laming, R. I.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Liang, J. Z.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

McIntyre, R. J.

P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Morkel, P. R.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Payne, D. N.

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

Pflibsen, K. P.

Podoleanu, A. Gh.

A. Gh. Podoleanu, G. M. Dobre, D. A. Jackson, “En-face coherence imaging using galvanometer scanner modulation,” Opt. Lett. 23, 147–149 (1998).
[CrossRef]

A. Gh. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rashleigh, S. C.

Rogers, J. A.

A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
[CrossRef]

Rollins, A. M.

Rudolph, W.

Safin, S. A.

S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
[CrossRef]

Salathe, R. P.

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seeger, M.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

Semenov, A. T.

S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
[CrossRef]

Shidlovski, V. R.

S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
[CrossRef]

Sorin, W. V.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Szydlo, J.

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

Takada, K.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
[CrossRef]

K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Tearney, G. J.

Ulrich, R.

Ungarunyawee, R.

Walti, R.

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

Webb, D. J.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
[CrossRef]

Webb, P. P.

P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Webb, R. H.

R. H. Webb, G. W. Hughes, “Detectors for scanning video imagers,” Appl. Opt. 32, 6227–6235 (1993).
[CrossRef] [PubMed]

R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 438–450.
[CrossRef]

Weinreb, R. N.

Welsch, E.

Williams, D. R.

Wilson, T.

R. Juskaitis, T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
[CrossRef]

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[CrossRef] [PubMed]

T. Wilson, Confocal Microscopy (Academic, London, 1990).

T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 11, pp. 113–126.
[CrossRef]

Yazdanfar, S.

Yukimatsu, K.

K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

K. Takada, A. Himeno, K. Yukimatsu, “Phase-noise and shot-noise operations of low coherence optical time domain reflectometry,” Appl. Phys. Lett. 59, 2483–2485 (1991).
[CrossRef]

Electron. Lett.

S. A. Safin, A. T. Semenov, V. R. Shidlovski, “High-power superluminescent diodes with extremely small Fabry-Perot modulation depth,” Electron. Lett. 28, 127–129 (1992).
[CrossRef]

A. Gh. Podoleanu, D. A. Jackson, “Combined optical coherence tomograph and scanning laser ophthalmoscope,” Electron. Lett. 34, 1088–1090 (1998).
[CrossRef]

P. R. Morkel, R. I. Laming, D. N. Payne, “Noise characteristics of high-power doped-fiber superluminescent sources,” Electron. Lett. 26, 96–97 (1990).
[CrossRef]

IEEE J. Quantum Electron.

K. Takada, “Noise in optical low-coherence reflectometry,” IEEE J. Quantum Electron. 34, 1098–1108 (1998).
[CrossRef]

IEEE Photon. Technol. Lett.

W. V. Sorin, D. M. Baney, “A simple intensity noise reduction technique for optical low-coherence reflectometry,” IEEE Photon. Technol. Lett. 4, 1404–1406 (1992).
[CrossRef]

J. Biomed. Opt.

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, F. Fitzke, “Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry,” J. Biomed. Opt. 3(1), 12–20 (1998).
[CrossRef]

J. Microsc. (Oxford)

R. Juskaitis, T. Wilson, “Scanning interference and confocal microscopy,” J. Microsc. (Oxford) 176, 188–194 (1994).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

J. Szydlo, H. Bleuler, R. Walti, R. P. Salathe, “High-speed measurements in optical low-coherence reflectometry,” Meas. Sci. Technol. 9, 1159–1162 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

RCA Rev.

P. P. Webb, R. J. McIntyre, J. J. Conradi, “Properties of avalanche photodiodes,” RCA Rev. 35, 234–278 (1974).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

R. H. Webb, “Scanning laser ophthalmoscope,” in Noninvasive Diagnostic Techniques in Ophthalmology, B. R. Masters, ed. (Springer-Verlag, New York, 1990), pp. 438–450.
[CrossRef]

Data Sheets of the Scanning Laser Ophthalmoscope, G. Rodenstock Instruments GmbH, Postfach 1326, Heidelberg, Germany, (1996); Data Sheets of the Heidelberg Laser Scanning Systems, Heidelberg Engineering, GmbH, Heidelberg, Germany (1996).

A. Gh. Podoleanu, M. Seeger, G. M. Dobre, D. J. Webb, D. A. Jackson, “Digital signal processing for fast OCT imaging,” in Applied Optics and Optoelectronics, K. T. V. Grattan, ed. (Institute of Physics, Bristol, 1998), pp. 140–144.

Data sheets of Optical Coherence Tomography, Humphrey Instruments, 2992 Alvarado St., San Leandro, Calif. 94577 (1996).

Safe Use of Lasers, ANSI, Z 136.1 (American National Standards Institute, New York, 1986).

Nirvana balanced photodetector in 1997–1998 catalog, Vol. 8.2, New Focus, Inc., Santa Clara, Calif.

T. Wilson, Confocal Microscopy (Academic, London, 1990).

A. Gh. Podoleanu, J. A. Rogers, D. J. Webb, D. A. Jackson, “Criteria in the simultaneous presentation of the images provided by a stand alone OCT/SLO system,” in Medical Applications of Lasers in Dermatology, Cardiology, Ophthalmology, and Dentistry, P. Bjerring, H. Hoenigsmann, F. Lafitte, S. Andersson-Engels, H. J. Geschwind, H. J. Sterenborg, G. Bandieramonte, Z. Bekassy, R. Birngruber, A. J. Fercher, G. B. Altshuler, R. Hibst, eds., Proc. SPIE3564, 163–168 (1999).
[CrossRef]

T. Wilson, “The role of the pinhole in confocal imaging systems,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, New York, 1990), Chap. 11, pp. 113–126.
[CrossRef]

T. R. Corle, G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems, (Academic, San Diego, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Detailed schematic diagram of the apparatus using a plate beam splitter to divert light to the separate receiver, SR. SLD, superluminescent diode (Superlum6 SLD-361); C1, C2, C3, microscope objectives; DC1, DC2, directional couplers; PM, 5-cm-diameter piezocylinder with two turns of fiber acting as a phase modulator; SG, sinusoidal generator; TS, computer-controlled translation stage; CC, corner cube; L2, MX, MY, orthogonal galvanometer mirrors; TX, Y, ramp generators; DMOD, demodulation block; L1, convergent lens; PD1, PD2, photodetectors; DA, differential amplifier; Σ, adder and amplifier; PD3 and A, photodetector and amplifier, respectively, for the separate confocal receiver; H, pinhole; PB, plate beam splitter; HE, patient’s eye; EL, eye lens; HR, human retina; EM, eye model; LM, eye model lens; RR, retroreflector; K, switch; OS, opaque screen to block the reference path for case C; PC, personal computer; VSG, dual input variable scan frame grabber for displaying and manipulating two images simultaneously.

Fig. 2
Fig. 2

CSO minimum detectable reflectivity for very large pinhole (v H infinite) normalized to the value obtained for χmin, CSO minimum detectable reflectivity for v H = 1 normalized to the value obtained for χmax, OCT minimum detectable reflectivity normalized to the value obtained for χ = 0, and the necessary v H to maintain the same signal as for χmax, v H = 1 when reducing χ. CSO minimum detectable reflectivities vary as 1/χ, and OCT minimum detectable reflectivity varies as 1/(1 - χ). The horizontal dashed line a–b shows the CSO minimum detectable reflectivity normalized to the value obtained for χmax, ensured by a corresponding increase in the normalized pinhole diameter as shown by the curve v H (χ), when χ is reduced from χmax (point b) to χmin (point a).

Fig. 3
Fig. 3

Experimental confocal profiles for configuration C (fiber) and configuration SR (pinhole) measured with eye model lens LM of 2.5-cm focal length and a beam diameter of 2.5 mm.

Fig. 4
Fig. 4

OCT and confocal image obtained for the eye model with a 5-pence coin at the back of a 2.5-cm focal length lens. Transversal size is 4 mm × 4 mm. (a) CSO image; (b), (c), and (d), OCT images for positions of the reference mirror separated by 100 µm.

Fig. 5
Fig. 5

(a) CSO image and (b–h) OCT images of the retina of a volunteer showing the optic nerve layer. The OCT images are separated in depth by 0.16 mm. RNFL, retinal nerve fiber layer; PL, photoreceptor layer; RPE, retinal pigment epithelium. Transversal size is 3 mm × 3 mm.

Fig. 6
Fig. 6

(a) CSO image and (b–h) OCT images of the retina of a volunteer showing the foveal pit. The depth difference between (c) and (b) and between (d) and (c) is 60 µm, between (e) and (d) is 100 µm, between (f) and (e) is 160 µm, and between (g) and (f) and between (h) and (f) is 40 µm. RNFL, retinal nerve fiber layer; PL, photoreceptor layer; RPE, retinal pigment epithelium. Transversal size is 3 mm × 3 mm.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

ICSOC=αpγξFO+RP
ICSOSR=MαaχξHOP,
ΔIp2=2eBI+1+Π2EI2=ΔIsh2+ΔIex2,
E=BΔνeff,
S/NC=αpξFγPO2ΔIn2C,
S/NSR=MαaχξHPO2ΔIn2SR.
ΔIn2=ΔIsh2+ΔIex2+ΔIa2.
F=0.982-1/M+0.02M.
I>Ic=2eΔνeff,
OCSO,minC=3ΔIa21/2αpγξFP.
S/N=MαaγξFOP22eBαaγξFO+RPMF+Ids+IdbM2F+4kTBRL,
OCSO,minC3αaγξFP1M2eBFMRγαaP+4kTBRL1/2.
R  2kTRL1αaγeFMP,
OCSO,minC3ξF2R eBαaγPFM1/2.
OCSO,minC=3σ1-γξF1+Π2E1/2.
OCSO,minSR3αaχξHP1M2eBId+4kTBRL1/2.
ΔIp2=2eBIref+21+Π2EIFERIref=ΔIsh2+ΔIex2,
S/N=2αpγP2ξF1-χ1-γ-1σΓ02O2eBαpPγσ1-γ-1+21+Π2E1-γ-1σRαpγP2+BΔIa2,
OOCT,min9 eBP1αpγ1-χξFΓ02,
vH=2πλN.A.rH,
ξHvH=1-J02vH-J12vH,
δz=n λπf2re2 u1/2,
ΔIex2=1+Π2Eαγ1P2σ2,
ΔIex2=21+Π2EαP2γ1-γ-1Rσ,
γ1-γ-1R<σγ12,
S/N=GσAσ2+Dσ+C,
G=2αpγ1P2ξFΓ02O,
A=21+Π2Eγ12P2,
D=2eBαpPγ1,
C=BΔIa2
σopt=D+D2+4AC1/22A.
Iopt=σoptαpγ1P.
Iopt>Ic,
ΔIa2>e2Δνeff,
ΔIa2=4kTBRL.
B=1CRL,

Metrics