Abstract

We describe a low-cost modification based on the research of Arecchi et al. [Opt. Commun. 3, 284–288 (1971)] on a standard photon correlation spectroscopy setup for measuring small (≃1%) and fast (resolution, ≃10 ns) light fluctuations. Details of the electronics and optics permit the apparatus to be easily reproduced. Careful tests show that spurious correlations of ≤1% can be achieved with standard detectors only when taking precautions with the electronics. Moreover, measurements on latex spheres, ellipsoids, and protein solutions show that fast and very small light fluctuations (≃1-5%) can be studied versus scattering vector and light polarization.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, London, 1991).
  2. N. L. Thompson, “Fluorescence correlation spectroscopy,” in Techniques, Vol. 1 of Topics in Fluorescence Spectroscopy, J. J. Lakowitz, ed. (Plenum, New York, 1991), pp. 337–378.
  3. B. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1975).
  4. A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
    [CrossRef]
  5. J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
    [PubMed]
  6. G. Chirico, G. Baldini, “Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy,” J. Chem. Phys. 104, 6020–6026 (1996).
    [CrossRef]
  7. P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
    [CrossRef] [PubMed]
  8. C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
    [CrossRef] [PubMed]
  9. J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
    [CrossRef]
  10. S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
    [CrossRef]
  11. A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
    [CrossRef]
  12. A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
    [CrossRef]
  13. A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
    [CrossRef]
  14. H. Dautet, P. Deschamps, B. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993).
    [PubMed]
  15. R. Foord, R. Jones, C. J. Oliver, E. R. Pike, “The use of photomultiplier tubes for photon counting,” Appl. Opt. 8, 1975–1989 (1969); E. Gulari, B. Chu, “Photon correlation in the nanosecond range and its applications to the evaluation of RCS C31034 photomultiplier tubes,” Rev. Sci. Instrum. 48, 1560–1567 (1977).
    [CrossRef] [PubMed]
  16. H. C. Burstyn, “Afterpulsing effects in photon correlation experiments,” Rev. Sci. Instrum. 51, 1431–1433 (1980).
    [CrossRef]
  17. F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
    [CrossRef]
  18. C. Bendjaballah, “Autocorrelation function of scattered light for a binary fluid near the critical mixing point,” Opt. Commun. 9, 279–281 (1973).
    [CrossRef]
  19. D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
    [CrossRef] [PubMed]
  20. B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
    [CrossRef]
  21. H. C. Burstyn, J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A 27, 1071–1085 (1983).
    [CrossRef]
  22. G. D. J. Phillies, “Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981); “Experimental demonstration of multiple-scattering suppression in quasi-elastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
    [CrossRef]
  23. J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983); H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
    [CrossRef]
  24. G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Phys. Rep. 272, 215–372 (1996).
    [CrossRef]
  25. P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
    [CrossRef]
  26. We are referring to the Small Outline Single Photon Detector setup produced by ALV-Laser mbH, Langen, Germany.
  27. R. Peters, “Introduction to the multiple tau correlator Technique,” (ALV-Laser mbH, Langen, Germany).
  28. K. Schätzel, “Noise on photon correlation data: I,” Quantum Opt. 2, 287–305 (1990).
    [CrossRef]
  29. R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
    [CrossRef]
  30. G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
    [CrossRef]
  31. S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
    [CrossRef]
  32. M. Muschol, F. Rosenberger, “Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results,” J. Chem. Phys. 103, 10424–10432 (1995).
    [CrossRef]
  33. D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
    [CrossRef] [PubMed]

1997

P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
[CrossRef] [PubMed]

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

1996

G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Phys. Rep. 272, 215–372 (1996).
[CrossRef]

G. Chirico, G. Baldini, “Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy,” J. Chem. Phys. 104, 6020–6026 (1996).
[CrossRef]

1995

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

M. Muschol, F. Rosenberger, “Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results,” J. Chem. Phys. 103, 10424–10432 (1995).
[CrossRef]

1993

1992

J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
[PubMed]

1990

A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
[CrossRef]

J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
[CrossRef]

K. Schätzel, “Noise on photon correlation data: I,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

1989

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

1987

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

1983

H. C. Burstyn, J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A 27, 1071–1085 (1983).
[CrossRef]

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983); H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

1981

G. D. J. Phillies, “Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981); “Experimental demonstration of multiple-scattering suppression in quasi-elastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

1980

H. C. Burstyn, “Afterpulsing effects in photon correlation experiments,” Rev. Sci. Instrum. 51, 1431–1433 (1980).
[CrossRef]

1978

A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
[CrossRef]

1976

G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
[CrossRef]

1973

C. Bendjaballah, “Autocorrelation function of scattered light for a binary fluid near the critical mixing point,” Opt. Commun. 9, 279–281 (1973).
[CrossRef]

1971

S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
[CrossRef]

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

1969

Abney, J. R.

J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
[CrossRef]

Andries, C.

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

Arecchi, F. T.

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

Arosio, D.

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

Baldini, G.

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

G. Chirico, G. Baldini, “Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy,” J. Chem. Phys. 104, 6020–6026 (1996).
[CrossRef]

Bellini, T. T.

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

Bendjaballah, C.

C. Bendjaballah, “Autocorrelation function of scattered light for a binary fluid near the critical mixing point,” Opt. Commun. 9, 279–281 (1973).
[CrossRef]

Benedek, G.

G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
[CrossRef]

Benedek, G. B.

S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
[CrossRef]

Beretta, S.

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

Berne, B.

B. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1975).

Bieschke, J.

P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
[CrossRef] [PubMed]

Blanch, H. W.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Burstyn, H. C.

H. C. Burstyn, J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A 27, 1071–1085 (1983).
[CrossRef]

H. C. Burstyn, “Afterpulsing effects in photon correlation experiments,” Rev. Sci. Instrum. 51, 1431–1433 (1980).
[CrossRef]

Chirico, G.

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

G. Chirico, G. Baldini, “Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy,” J. Chem. Phys. 104, 6020–6026 (1996).
[CrossRef]

Chu, B.

A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
[CrossRef]

B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, London, 1991).

Clark, N. A.

S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
[CrossRef]

Clauwert, J.

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

Corti, M.

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

Dautet, H.

De Giorgio, V.

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

de Kruif, C. G.

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983); H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

Degiorgio, V.

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

Deschamps, P.

Dhont, J. K. G.

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983); H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

Dion, B.

Donati, S.

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

Dorfmüller, T.

A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
[CrossRef]

Dubin, S. B.

S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
[CrossRef]

Eimer, W.

A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
[CrossRef]

Fischer, W.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

Foord, R.

Fornefeld, U. M.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Geerts, H.

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

Guedens, W.

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

Hendrix, M.

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

Heyer, C.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Hinz, B.

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

Jen, S.

A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
[CrossRef]

Jones, R.

Kapp, U.

J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
[PubMed]

Kremer, W.

J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
[PubMed]

Kuehner, D. E.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Langowski, J.

J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
[PubMed]

Leipertz, A.

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

MacGregor, A. D.

MacSween, D.

Mazer, N.

G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
[CrossRef]

McIntyre, R. J.

Muschol, M.

M. Muschol, F. Rosenberger, “Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results,” J. Chem. Phys. 103, 10424–10432 (1995).
[CrossRef]

Nägele, G.

G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Phys. Rep. 272, 215–372 (1996).
[CrossRef]

Nilgens, H.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

Oehlenschlager, F.

P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
[CrossRef] [PubMed]

Oliver, C. J.

Owicki, J. C.

J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
[CrossRef]

Patkowski, A.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
[CrossRef]

A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
[CrossRef]

Pecora, R.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

B. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1975).

Peters, W.

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

Phillies, G.

G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
[CrossRef]

Phillies, G. D. J.

G. D. J. Phillies, “Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981); “Experimental demonstration of multiple-scattering suppression in quasi-elastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

Piazza, R.

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

Pike, E. R.

Pine, D. J.

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

Prausnitz, J. M.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Pusey, P. N.

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

Rämsch, C.

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Rosenberger, F.

M. Muschol, F. Rosenberger, “Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results,” J. Chem. Phys. 103, 10424–10432 (1995).
[CrossRef]

Scalettar, B. A.

J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
[CrossRef]

Schätzel, K.

K. Schätzel, “Noise on photon correlation data: I,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

Schwille, P.

P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
[CrossRef] [PubMed]

Segre, P. N.

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

Sengers, J. V.

H. C. Burstyn, J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A 27, 1071–1085 (1983).
[CrossRef]

Simonsohn, G.

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

Stavans, J.

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

Steffen, W.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

Thompson, N. L.

N. L. Thompson, “Fluorescence correlation spectroscopy,” in Techniques, Vol. 1 of Topics in Fluorescence Spectroscopy, J. J. Lakowitz, ed. (Plenum, New York, 1991), pp. 337–378.

Tough, R. J. A.

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

Trottier, C.

Van Menegen, W.

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

Webb, P. P.

Weitz, D. A.

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

Wu, G.

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

Appl. Opt.

Biophys. Chem.

P. Schwille, J. Bieschke, F. Oehlenschlager, “Kinetic investigations by fluorescence correlation spectroscopy: the analytical and diagnostic potential of diffusion studies,” Biophys. Chem. 66, 211–228 (1997).
[CrossRef] [PubMed]

Biophys. J.

C. Andries, W. Guedens, J. Clauwert, H. Geerts, “Photon and fluorescence correlation spectroscopy and light scattering of eye-lens proteins at moderate concentrations,” Biophys. J. 43, 345–354 (1983).
[CrossRef] [PubMed]

J. R. Abney, B. A. Scalettar, J. C. Owicki, “Mutual diffusion of interacting membrane proteins,” Biophys. J. 56, 315–326 (1990).
[CrossRef]

D. E. Kuehner, C. Heyer, C. Rämsch, U. M. Fornefeld, H. W. Blanch, J. M. Prausnitz, “Interactions of lysozyme in concentrated electrolyte solutions from dynamic light-scattering measurements,” Biophys. J. 73, 3211–3224 (1997).
[CrossRef] [PubMed]

Biopolymers

A. Patkowski, W. Eimer, T. Dorfmüller, “Internal dynamics of tRNAPhe studied by depolarized dynamic light scattering,” Biopolymers 30, 975–983 (1990).
[CrossRef]

A. Patkowski, W. Eimer, T. Dorfmüller, “A polarized and depolarized dynamic light scattering study of the tRNAPhe conformation in solution,” Biopolymers 30, 93–105 (1990).
[CrossRef]

A. Patkowski, S. Jen, B. Chu, “Intensity fluctuation spectroscopy and transfer RNA conformation. Changes of size and shape of tRNA in the melting process,” Biopolymers 17, 2643–2662 (1978).
[CrossRef]

J. Chem. Phys.

A. Patkowski, W. Steffen, H. Nilgens, W. Fischer, R. Pecora, “Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism,” J. Chem. Phys. 106, 8401–8408 (1997).
[CrossRef]

S. Beretta, G. Chirico, D. Arosio, G. Baldini, “Photon correlation spectroscopy of interacting and dissociating hemoglobin,” J. Chem. Phys. 106, 8427–8435 (1997).
[CrossRef]

G. D. J. Phillies, “Suppression of multiple scattering effects in quasi-elastic light scattering by homodyne cross-correlation techniques,” J. Chem. Phys. 74, 260–262 (1981); “Experimental demonstration of multiple-scattering suppression in quasi-elastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A 24, 1939–1943 (1981).
[CrossRef]

J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. I. Theory,” J. Chem. Phys. 79, 1658–1663 (1983); H. J. Mos, C. Pathmamanoharan, J. K. G. Dhont, C. G. de Kruif, “Scattered light intensity cross correlation. II. Experimental,” J. Chem. Phys. 84, 45–49 (1986).
[CrossRef]

G. Chirico, G. Baldini, “Rotational diffusion and internal motions of circular DNA. II. Depolarized photon correlation spectroscopy,” J. Chem. Phys. 104, 6020–6026 (1996).
[CrossRef]

G. Phillies, G. Benedek, N. Mazer, “Diffusion in protein solutions at high concentrations: a study by quasi-elastic light scattering spectroscopy,” J. Chem. Phys. 65, 1883–1892 (1976).
[CrossRef]

S. B. Dubin, N. A. Clark, G. B. Benedek, “Measurement of the rotational diffusion coefficient of lysozyme by depolarized light scattering: configuration of lysozyme in solution,” J. Chem. Phys. 54, 5158–5164 (1971).
[CrossRef]

M. Muschol, F. Rosenberger, “Interactions in undersaturated and supersaturated lysozyme solutions: static and dynamic light scattering results,” J. Chem. Phys. 103, 10424–10432 (1995).
[CrossRef]

J. Mod. Opt.

P. N. Segre, W. Van Menegen, P. N. Pusey, W. Peters, “Two-color dynamic light scattering,” J. Mod. Opt. 42, 1929–1952 (1995).
[CrossRef]

B. Hinz, G. Simonsohn, M. Hendrix, G. Wu, A. Leipertz, “The superposition of Rayleigh and Brillouin radiation in photon correlation spectroscopy of liquids,” J. Mod. Opt. 34, 1093–1106 (1987).
[CrossRef]

Methods Enzymol.

J. Langowski, W. Kremer, U. Kapp, “Dynamic light scattering for study of solution conformation and dynamics of superhelical DNA,” Methods Enzymol. 211, 430–448 (1992).
[PubMed]

Opt. Commun.

F. T. Arecchi, M. Corti, V. Degiorgio, S. Donati, “Measurements of the light intensity correlations in the subnanosecond region by photomultipliers,” Opt. Commun. 3, 284–288 (1971).
[CrossRef]

C. Bendjaballah, “Autocorrelation function of scattered light for a binary fluid near the critical mixing point,” Opt. Commun. 9, 279–281 (1973).
[CrossRef]

R. Piazza, J. Stavans, T. T. Bellini, V. De Giorgio, “Light scattering study of crystalline latex particles,” Opt. Commun. 73, 263–267 (1989).
[CrossRef]

Phys. Rep.

G. Nägele, “On the dynamics and structure of charge-stabilized suspensions,” Phys. Rep. 272, 215–372 (1996).
[CrossRef]

Phys. Rev. A

H. C. Burstyn, J. V. Sengers, “Time dependence of critical concentration fluctuations in a binary liquid,” Phys. Rev. A 27, 1071–1085 (1983).
[CrossRef]

Phys. Rev. Lett.

D. A. Weitz, D. J. Pine, P. N. Pusey, R. J. A. Tough, “Nondiffusive Brownian motion studied by diffusing-wave spectroscopy,” Phys. Rev. Lett. 63, 1747–1750 (1989).
[CrossRef] [PubMed]

Quantum Opt.

K. Schätzel, “Noise on photon correlation data: I,” Quantum Opt. 2, 287–305 (1990).
[CrossRef]

Rev. Sci. Instrum.

H. C. Burstyn, “Afterpulsing effects in photon correlation experiments,” Rev. Sci. Instrum. 51, 1431–1433 (1980).
[CrossRef]

Other

B. Chu, Laser Light Scattering: Basic Principles and Practice (Academic, London, 1991).

N. L. Thompson, “Fluorescence correlation spectroscopy,” in Techniques, Vol. 1 of Topics in Fluorescence Spectroscopy, J. J. Lakowitz, ed. (Plenum, New York, 1991), pp. 337–378.

B. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1975).

We are referring to the Small Outline Single Photon Detector setup produced by ALV-Laser mbH, Langen, Germany.

R. Peters, “Introduction to the multiple tau correlator Technique,” (ALV-Laser mbH, Langen, Germany).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical setup. The lower panel is a view from the top of the focusing and the collection optics for the one-photomultiplier setup. The upper panel is a side view of the collection optics for the two-photomultiplier setup. O1, objective; PH, spatial filter pinhole; L1–L5, lenses; POL, polarizer; AN, analyzer; C, sample cell; SL, slits; S2, S3, removable mirrors; PM, EMI 9863/KB100 photomultiplier; p1, p2, Hamamatsu H5873 photomultipliers; E, eyepiece; FC, fiber connectors; D1, D2, discriminator circuits; BS, cube beam splitter; ch0, ch1, cables to channels 0 and 1 of the correlator.

Fig. 2
Fig. 2

Discriminator circuit. D1 = D2 = diode type 1N914; R1 = R2 = 50 Ω; C1 = C2 = C6 = C7 = C8 = C9 = 0.1 µF; C5 = 10 µF; C3 = C4 = 0.2 µF; R3 = R4 = 1.5 kΩ; R5 = R6 = 1.5 kΩ; R7 = R8 = R9 = 1 kΩ; P1 = variable resistance 1 kΩ; R10 = 10 kΩ; L1 = 1 mH. Numbers 1–14 indicate the number of pins used, according to the operational data sheet.

Fig. 3
Fig. 3

Count rates of the two H5873 photomultipliers versus the threshold level of the discriminating circuit. The arrow indicates the chosen threshold level.

Fig. 4
Fig. 4

CCF’s of the light emitted by a LED biased at the following frequencies: 0.1, 1, 4 MHz from bottom to top. The continuous curves are the best fit with Eq. (3).

Fig. 5
Fig. 5

CCF of the depolarized (i.e., horizontal detection polarization) light scattered from a 60% w/w mixture of acetate buffer and glycerol: filled circles, 25-cm cables with inductance filter; open squares, 2-m cables without inductance filter. The solid lines indicate the statistical uncertainty due to experimental duration and count rate.

Fig. 6
Fig. 6

CCF’s of light from a LED driven at 1 kHz collected at different counting rates from the two channels by employing optical attenuators on either detector. Inset: signal to noise of the CCF’s versus the counting rate ratio, also indicated beside the line type in the plot.

Fig. 7
Fig. 7

Comparison of the CCF of the two PMT outputs (solid curve) to the single ACF’s of each PMT output (dotted and dashed curves). Signal from a LED driven at 1 kHz.

Fig. 8
Fig. 8

Relaxation rates of PTFE (open squares, left y axis) and BSA (filled circles, right y axis) solutions versus the square of the scattering vector. The solid curve is a linear fit to the data. Data are from a square 1-cm cell at 17–35° and 55–110°.

Fig. 9
Fig. 9

Correlation functions of light scattered by a 60% glycerol/acetate mixture (open squares) and by two lysozyme solutions in the same solvent at C = 0.3-mg/ml (filled triangles) and C = 1.2-mg/ml (filled circles) protein concentration. The solid curves are best fits with a sum of two exponential decays.

Tables (2)

Tables Icon

Table 1 Channel Structure of the ALV-5000E/FAST Correlator

Tables Icon

Table 2 Correlograms’ Best-Fit Parameters for Glycerol/Acetate/Lysozyme Solutions

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

IkτIj0=IkIjfτGkjτ+Ikδk,jCkkτ,
Gkjτ=-+dthkthjt+τ, Ckjτ=-+dthkthjt+τ.
Gtn, τn=1τn20τnds 0τndσG˜tn+s-σ.
gtn, τn=1τn20τnds 0τndσg˜tn+s-σ.
gtn=1+SN sincπτn/T2g˜tn,
σgtn=1+gtn2n0n1M-n1/2,
gt=1+a0 exp-Γ0t+a1 exp-Γ1t2.
njk=1NjL=0Nj-1 n0k+L,
G1,2m=K=0M-m nm1Knm2K+m=1Nm2K=0M-mH,L=0Nm-1 n01K+Hn02K+L+m.
G1,2m=H,L=0Nm-1G˜1,2H-L+mNm2,
G1,2t=1τ20τds 0τdσG˜1,2s-σ+t.
g1,2m=MG1,2m-M01Mm2M01Mm2,
M01=k=1M nm1k,  Mm2=k=1M-m nm2k+m.
g1,2t=1+1τ20τds 0τdσG˜1,2s-σ+t.

Metrics