Abstract

We measured the modulation transfer function for microjetted microlenses with diameters ranging between 109 and 400 µm and with focal lengths ranging between 135 and 540 µm. We found that single-drop 109-µm-diameter microlenses perform close to their theoretical cutoff frequency. However, the larger lenses made with multiple droplets have a cutoff frequency that is 35% of the theoretical value. We interpret this as an illustration of the rapid increase in spherical aberration as the diameter of a lens increases.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
    [CrossRef]
  2. W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
    [CrossRef]
  3. D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
    [CrossRef] [PubMed]
  4. K. S. Lee, F. S. Barnes, “Microlenses on the end of single-mode optical fibers for laser applications,” Appl. Opt. 24, 3134–3139 (1985).
    [CrossRef] [PubMed]
  5. D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).
  6. I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).
  7. M. Kubo, M. Hanabusa, “Fabrication of microlenses by laser chemical vapor deposition,” Appl. Opt. 29, 2755–2759 (1990).
    [CrossRef] [PubMed]
  8. S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
    [CrossRef] [PubMed]
  9. G. Beadie, N. M. Lawandy, “Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses,” Opt. Lett. 20, 2153–2155 (1995).
    [CrossRef] [PubMed]
  10. M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
    [CrossRef]
  11. W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
    [CrossRef]
  12. M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).
  13. M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
    [CrossRef]
  14. M. Agu, A. Akiba, T. Mochizuki, S. Kamemaru, “Multimatched filtering array for an optical-neural pattern recognition system,” Appl. Opt. 29, 4087–4091 (1990).
    [CrossRef] [PubMed]
  15. D. Rastani, C. Lin, J. S. Patel, “Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators,” Appl. Opt. 31, 3046–3050 (1992).
    [CrossRef] [PubMed]
  16. M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
    [CrossRef] [PubMed]
  17. C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
    [CrossRef]
  18. N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
    [CrossRef] [PubMed]
  19. F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
    [CrossRef]
  20. L. G. Cohen, M. V. Schneider, “Microlenses for coupling junction lasers to optical fibers,” Appl. Opt. 13, 89–94 (1974).
    [CrossRef] [PubMed]
  21. J. Goodman, Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).
  22. C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989).
  23. W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).
  24. M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, New York, 1980).
  25. J. Goodman, Statistical Optics (Wiley, New York, 1985).
  26. A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
    [CrossRef]
  27. A. C. Marchant, E. A. Ironside, “Influence of optical bench errors on accuracy of OTF measurements,” Opt. Technol. 2, 85–87 (1970).
    [CrossRef]
  28. A. C. Marchant, “Accuracy in image evaluation: setting up an OTF standards laboratory,” Opt. Acta 18, 133–137 (1971).
    [CrossRef]

1998 (1)

1996 (2)

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

1993 (2)

S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
[CrossRef] [PubMed]

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
[CrossRef]

1992 (3)

1991 (1)

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).

1990 (4)

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

M. Agu, A. Akiba, T. Mochizuki, S. Kamemaru, “Multimatched filtering array for an optical-neural pattern recognition system,” Appl. Opt. 29, 4087–4091 (1990).
[CrossRef] [PubMed]

M. Kubo, M. Hanabusa, “Fabrication of microlenses by laser chemical vapor deposition,” Appl. Opt. 29, 2755–2759 (1990).
[CrossRef] [PubMed]

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

1985 (1)

1982 (1)

1975 (1)

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

1974 (1)

1971 (1)

A. C. Marchant, “Accuracy in image evaluation: setting up an OTF standards laboratory,” Opt. Acta 18, 133–137 (1971).
[CrossRef]

1970 (2)

A. C. Marchant, E. A. Ironside, “Influence of optical bench errors on accuracy of OTF measurements,” Opt. Technol. 2, 85–87 (1970).
[CrossRef]

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Agu, M.

Akiba, A.

Attryde, J. F.

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

Barnes, F. S.

Beadie, G.

Becklund, O. A.

C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989).

Born, M.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, New York, 1980).

Chen, T.

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Cloonan, T. J.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Cohen, L. G.

Cox, W. R.

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Craft, N. C.

Daly, D.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Davies, N.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Dragone, C.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
[CrossRef]

Edwards, C. A.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
[CrossRef]

Feldblum, A. Y.

N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
[CrossRef] [PubMed]

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Furukawa, M.

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Goodman, J.

J. Goodman, Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Hanabusa, M.

Hayes, D. J.

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Hinton, H. S.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Hutley, M.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).

Hutley, M. C.

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Iga, K.

Ironside, E. A.

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

A. C. Marchant, E. A. Ironside, “Influence of optical bench errors on accuracy of OTF measurements,” Opt. Technol. 2, 85–87 (1970).
[CrossRef]

Kamemaru, S.

Kanai, G.

Kitano, I.

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Koizumi, K.

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Komachi, Y.

Kubo, M.

Lawandy, N. M.

Lazare, S.

Lee, K. S.

Lin, C.

MacFarlane, D. L.

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Marchant, A. C.

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

A. C. Marchant, “Accuracy in image evaluation: setting up an OTF standards laboratory,” Opt. Acta 18, 133–137 (1971).
[CrossRef]

A. C. Marchant, E. A. Ironside, “Influence of optical bench errors on accuracy of OTF measurements,” Opt. Technol. 2, 85–87 (1970).
[CrossRef]

Matsumura, H.

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

McCormick, F. B.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Mersereau, K. O.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Mihailov, S.

Mochizuki, T.

Narayan, V.

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Oikawa, M.

Patel, J. S.

Presby, H. M.

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
[CrossRef]

Rastani, D.

Sasian, J. M.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Schneider, M. V.

Smith, W. J.

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

Stevens, R.

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).

Stevens, R. F.

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Tatum, J. A.

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

Tooley, F. A. P.

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Uchida, T.

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Ussery, D.

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

Ussery, D. W.

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Wakaki, M.

Williams, C. S.

C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989).

Williams, T. L.

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

Wilson, E.

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, New York, 1980).

Appl. Opt. (10)

D. L. MacFarlane, E. Wilson, W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, “Fiber-coupler-based measurement of lenslet focal lengths,” Appl. Opt. 35, 711–714 (1996).
[CrossRef] [PubMed]

K. S. Lee, F. S. Barnes, “Microlenses on the end of single-mode optical fibers for laser applications,” Appl. Opt. 24, 3134–3139 (1985).
[CrossRef] [PubMed]

M. Kubo, M. Hanabusa, “Fabrication of microlenses by laser chemical vapor deposition,” Appl. Opt. 29, 2755–2759 (1990).
[CrossRef] [PubMed]

S. Mihailov, S. Lazare, “Fabrication of refractive microlens arrays by excimer laser ablation of amorphous Teflon,” Appl. Opt. 32, 6211–6218 (1993).
[CrossRef] [PubMed]

M. Agu, A. Akiba, T. Mochizuki, S. Kamemaru, “Multimatched filtering array for an optical-neural pattern recognition system,” Appl. Opt. 29, 4087–4091 (1990).
[CrossRef] [PubMed]

D. Rastani, C. Lin, J. S. Patel, “Active-fiber star coupler that uses arrays of microlenses and liquid-crystal modulators,” Appl. Opt. 31, 3046–3050 (1992).
[CrossRef] [PubMed]

M. Oikawa, K. Iga, “Distributed-index planar microlens,” Appl. Opt. 21, 1052–1056 (1982).
[CrossRef] [PubMed]

M. Wakaki, Y. Komachi, G. Kanai, “Microlenses and microlens arrays formed on a glass plate by use of a CO2 laser,” Appl. Opt. 37, 627–631 (1998).
[CrossRef]

N. C. Craft, A. Y. Feldblum, “Optical interconnects based on arrays of surface-emitting lasers and lenslets,” Appl. Opt. 31, 1735–1739 (1992).
[CrossRef] [PubMed]

L. G. Cohen, M. V. Schneider, “Microlenses for coupling junction lasers to optical fibers,” Appl. Opt. 13, 89–94 (1974).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett. (1)

D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, D. J. Hayes, “Microjet fabrication of microlens arrays,” IEEE Photon. Technol. Lett. 6, 1112–1114 (1994).
[CrossRef]

J. Lightwave Technol. (1)

C. A. Edwards, H. M. Presby, C. Dragone, “Ideal microlenses for laser to fiber coupling,” J. Lightwave Technol. 11, 252–257 (1993).
[CrossRef]

J. Mod. Opt. (1)

M. C. Hutley, “Optical techniques for the generation of microlens arrays,” J. Mod. Opt. 37, 253–265 (1990).
[CrossRef]

J. Phys. E (1)

D. Daly, R. F. Stevens, M. C. Hutley, N. Davies, “The manufacture of microlenses by melting photoresist,” J. Phys. E 1, 759–766 (1990).

Jpn. J. Appl. Phys. Suppl. (1)

I. Kitano, K. Koizumi, H. Matsumura, T. Uchida, M. Furukawa, “A light-focusing fiber guide prepared by ion-exchange techniques,” Jpn. J. Appl. Phys. Suppl. 39, 63–70 (1970).

Opt. Acta (2)

A. C. Marchant, “Accuracy in image evaluation: setting up an OTF standards laboratory,” Opt. Acta 18, 133–137 (1971).
[CrossRef]

A. C. Marchant, E. A. Ironside, J. F. Attryde, T. L. Williams, “The reproducibility of MTF measurements,” Opt. Acta 22, 249–264 (1975).
[CrossRef]

Opt. Commun. (1)

W. R. Cox, T. Chen, D. Ussery, D. J. Hayes, J. A. Tatum, D. L. MacFarlane, “Microjetted lenslet tipped fibers,” Opt. Commun. 123, 492–496 (1996).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

F. B. McCormick, F. A. P. Tooley, T. J. Cloonan, J. M. Sasian, H. S. Hinton, K. O. Mersereau, A. Y. Feldblum, “Optical interconnections using microlens arrays,” Opt. Quantum Electron. 24, S465–S477 (1992).
[CrossRef]

Opt. Technol. (1)

A. C. Marchant, E. A. Ironside, “Influence of optical bench errors on accuracy of OTF measurements,” Opt. Technol. 2, 85–87 (1970).
[CrossRef]

Phys. World (1)

M. Hutley, R. Stevens, D. Daly, “Microlens arrays,” Phys. World27–32 (July1991).

Other (6)

W. R. Cox, D. J. Hayes, T. Chen, D. W. Ussery, D. L. MacFarlane, E. Wilson, “Fabrication of micro-optics by microjet printing,” in Micro-Optics/Micromechanics and Laser Scanning and Shaping, M. E. Motamedi, L. Beiser, eds., Proc. SPIE2383, 110–115 (1995).
[CrossRef]

J. Goodman, Fourier Optics, 2nd ed. (McGraw-Hill, New York, 1996).

C. S. Williams, O. A. Becklund, Introduction to the Optical Transfer Function (Wiley, New York, 1989).

W. J. Smith, Modern Optical Engineering, 2nd ed. (McGraw-Hill, New York, 1990).

M. Born, E. Wolf, Principles of Optics, 6th ed. (Permagon, New York, 1980).

J. Goodman, Statistical Optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Experimental configuration for measuring the MTF of a microlens.

Fig. 2
Fig. 2

(a) Surface plot and (b) contour plot of the measured PSF for 1-drop microlens at focus.

Fig. 3
Fig. 3

Numerically integrated LSF for 1-drop microlens at focus.

Fig. 4
Fig. 4

Measured sagittal and tangential MTF’s of a 1-drop microlens compared with the theoretical result for the same f-number (f/1.25). lp, line pairs.

Fig. 5
Fig. 5

PSF contour for 3-drop microlens at focus.

Fig. 6
Fig. 6

MTF of a 3-drop microlens compared with the theoretical result for the same f-number (f/1.22). lp, line pairs.

Fig. 7
Fig. 7

PSF contour for 100-drop microlens at focus.

Fig. 8
Fig. 8

MTF of a 100-drop microlens compared with the theoretical result for the same f-number (f/1.35). lp, line pairs.

Fig. 9
Fig. 9

Two-dimensional MTF’s of the three lenses tested: (a) the 1-drop, (b) the 3-drop, and (c) the 100-drop lens. The corresponding Strehl ratios (S.R.’s) are also given in the plots. lp, line pairs.

Fig. 10
Fig. 10

Through-focus MTF for a 1-drop microlens. Curves are given for 0, ±20, ±40, and +60 µm of defocus. lp, line pairs.

Fig. 11
Fig. 11

Schematic for lateral displacements for a microtelescope system.

Fig. 12
Fig. 12

MTF for the microtelescope. (a) The MTF in the tangential direction (the direction of movement for the first microlens). (b) The MTF in the sagittal direction (the direction perpendicular to microlens movement). Curves are given for 0, 40, 80, and 120 µm of lateral displacement. lp, line pairs.

Fig. 13
Fig. 13

Contour plot of our FOM to assess the degree of spherical aberration is plotted against f-number and log10(d/λ). A FOM equal to 1 represents the diffraction limit. Contours represent spot size diameters that are 1, 2, 10, 50, and 100 times the size of respective diffraction limit spot sizes. Predicted performance of the 1-drop, 3-drop, and 100-drop microlens and a standard f/2 lens is plotted for n = 1.7 and λ = 665 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

FOM=B2.44λf-numberK d/λf-number3,
θ1=tan-1xinR2-xin21/2.
θ2=sin-1sin θ1n.
U= sin-1n sinθ1-θ2,
xout=xin-R2-xin21/2-R2-d221/2tanθ1-θ2,
TSA= LSA tanU.
B=0.5TSAmax=0.5LSAmax tanU.

Metrics