Abstract

Conventional Mach–Zehnder interferometer configuration is modified to enhance its stability from the vibrations. To study the effects of vibrations on the Mach–Zehnder interferometer, we used spectral interference fringes from a broadband nanosecond dye laser source. We observed an improvement in the stability of the interferometer by a factor of 3.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, G. Eichmann, R. R. Alfano, “Pulsed-mode laser Sagnac interferometry with applications in nonlinear optics and optical switching,” Appl. Opt. 25, 209–214 (1986).
    [CrossRef] [PubMed]
  2. P. Hariharan, “Sagnac or Michelson-Sagnac interferometer?” Appl. Opt. 14, 2319–2321 (1975).
    [CrossRef]
  3. P. Shajenko, E. L. Green, “Signal stabilization of optical interferometric hydrophones by tuning the light source,” Appl. Opt. 19, 1895–1897 (1980).
    [CrossRef]
  4. A. Olsson, C. L. Tang, E. L. Green, “Active stabilization of a Michelson interferometer by an electro-optically tuned laser,” Appl. Opt. 19, 1897–1899 (1980).
    [CrossRef] [PubMed]
  5. D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
    [CrossRef]
  6. G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
    [CrossRef]
  7. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
    [CrossRef]
  8. The authors are preparing the following paper for publication: “Measurement of the amplitude and phase of the complex degree of coherence of light through spectral interferometry.”

1994

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

1993

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

1986

1980

1975

Agarwal, G. S.

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Alfano, R. R.

Eichmann, G.

Green, E. L.

Hariharan, P.

James, D. F. V.

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Li, Y.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

Narayana Rao, D.

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

Nirmal Kumar, V.

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

Olsson, A.

Shajenko, P.

Tang, C. L.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

Appl. Opt.

J. Mod. Opt.

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Other

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

The authors are preparing the following paper for publication: “Measurement of the amplitude and phase of the complex degree of coherence of light through spectral interferometry.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral modulations for different arm lengths of the MZI with the path difference between the interfering beams kept fixed at Δ = 0.123 mm. Inset shows the configuration of the MZI and the effect of vibrations on mirror M2. L = L 1L 2; L 2 = L 1 ± Δ. The dashed-dotted curve is for 10 cm; the dotted curve is for 20 cm; and the solid curve is for 30 cm. SM, spectrometer; M1 and M2, mirrors; and BS, beam splitter.

Fig. 2
Fig. 2

Spectral modulations observed (circles) for an arm length of 30 cms, Δ = 0.123 mm, and the theoretical fit (solid curve) with Eq. (4) of the text.

Fig. 3
Fig. 3

Modified MZI setup: (a) Horizontally shifted rectangular configuration; (b) vertically shifted configuration; A = aperture.

Fig. 4
Fig. 4

Plot of the spectral visibility for different interferometer configuration: (a) MZI (L = 50 cm); (b) MZI (L = 30 cm, without aperture); (c) MZI (L = 30 cm, with aperture); (d) modified MZI (L = 30 cm, d = 7.5 mm); (e) modified MZI (L = 30 cm, d = 2.5 mm); (f) square-modified MZI (L = 30 cm, d = 2.5 mm); (g) vertically shifted MZI (L = 30 cm); (h) MZI (L = 10 cm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Sλ=1/2S0λ1+cos2πΔλ.
Vλ=Smaxλ-SminλSmaxλ+Sminλ.
|L1-L2|=|L1+δx+δy-L2+δx|=Δ+|δy|=Δ+δν,
Sλ=1/2S0λ1+cos2πλΔ+δν.
Sλ=1/2S0λ1+cos2πλΔ+δνm cos ϕ.
|L1-L2|=|L1-L2+2δy-δx|=Δ+2|δy-δx|=Δ+δν.

Metrics