Abstract

Conventional Mach–Zehnder interferometer configuration is modified to enhance its stability from the vibrations. To study the effects of vibrations on the Mach–Zehnder interferometer, we used spectral interference fringes from a broadband nanosecond dye laser source. We observed an improvement in the stability of the interferometer by a factor of 3.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Li, G. Eichmann, R. R. Alfano, “Pulsed-mode laser Sagnac interferometry with applications in nonlinear optics and optical switching,” Appl. Opt. 25, 209–214 (1986).
    [CrossRef] [PubMed]
  2. P. Hariharan, “Sagnac or Michelson-Sagnac interferometer?” Appl. Opt. 14, 2319–2321 (1975).
    [CrossRef]
  3. P. Shajenko, E. L. Green, “Signal stabilization of optical interferometric hydrophones by tuning the light source,” Appl. Opt. 19, 1895–1897 (1980).
    [CrossRef]
  4. A. Olsson, C. L. Tang, E. L. Green, “Active stabilization of a Michelson interferometer by an electro-optically tuned laser,” Appl. Opt. 19, 1897–1899 (1980).
    [CrossRef] [PubMed]
  5. D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
    [CrossRef]
  6. G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
    [CrossRef]
  7. L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
    [CrossRef]
  8. The authors are preparing the following paper for publication: “Measurement of the amplitude and phase of the complex degree of coherence of light through spectral interferometry.”

1994 (1)

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

1993 (1)

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

1986 (1)

1980 (2)

1975 (1)

Agarwal, G. S.

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Alfano, R. R.

Eichmann, G.

Green, E. L.

Hariharan, P.

James, D. F. V.

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Li, Y.

Mandel, L.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

Narayana Rao, D.

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

Nirmal Kumar, V.

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

Olsson, A.

Shajenko, P.

Tang, C. L.

Wolf, E.

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

Appl. Opt. (4)

J. Mod. Opt. (2)

D. Narayana Rao, V. Nirmal Kumar, “Experimental demonstration of spectral modification in a Mach–Zehnder interferometer,” J. Mod. Opt. 41, 1757–1763 (1994), and references therein.
[CrossRef]

G. S. Agarwal, D. F. V. James, “Spectral changes in the Mach–Zehnder interferometer,” J. Mod. Opt. 40, 1431–1436 (1993).
[CrossRef]

Other (2)

L. Mandel, E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, UK, 1995), Chaps. 4 and 5.
[CrossRef]

The authors are preparing the following paper for publication: “Measurement of the amplitude and phase of the complex degree of coherence of light through spectral interferometry.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectral modulations for different arm lengths of the MZI with the path difference between the interfering beams kept fixed at Δ = 0.123 mm. Inset shows the configuration of the MZI and the effect of vibrations on mirror M2. L = L 1L 2; L 2 = L 1 ± Δ. The dashed-dotted curve is for 10 cm; the dotted curve is for 20 cm; and the solid curve is for 30 cm. SM, spectrometer; M1 and M2, mirrors; and BS, beam splitter.

Fig. 2
Fig. 2

Spectral modulations observed (circles) for an arm length of 30 cms, Δ = 0.123 mm, and the theoretical fit (solid curve) with Eq. (4) of the text.

Fig. 3
Fig. 3

Modified MZI setup: (a) Horizontally shifted rectangular configuration; (b) vertically shifted configuration; A = aperture.

Fig. 4
Fig. 4

Plot of the spectral visibility for different interferometer configuration: (a) MZI (L = 50 cm); (b) MZI (L = 30 cm, without aperture); (c) MZI (L = 30 cm, with aperture); (d) modified MZI (L = 30 cm, d = 7.5 mm); (e) modified MZI (L = 30 cm, d = 2.5 mm); (f) square-modified MZI (L = 30 cm, d = 2.5 mm); (g) vertically shifted MZI (L = 30 cm); (h) MZI (L = 10 cm).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Sλ=1/2S0λ1+cos2πΔλ.
Vλ=Smaxλ-SminλSmaxλ+Sminλ.
|L1-L2|=|L1+δx+δy-L2+δx|=Δ+|δy|=Δ+δν,
Sλ=1/2S0λ1+cos2πλΔ+δν.
Sλ=1/2S0λ1+cos2πλΔ+δνm cos ϕ.
|L1-L2|=|L1-L2+2δy-δx|=Δ+2|δy-δx|=Δ+δν.

Metrics