Abstract

A model of the errors of temperature measurement with multiband systems was developed. Calculations of these errors for some measurement conditions and systems were carried out. It was shown that multiband systems are capable of producing accurate results of noncontact temperature measurement only in a limited number of applications and that to have small internal errors, they must be designed and built with much greater care than in the case of typical single-band systems.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Tank, “Infrared temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 29, 211–212 (1989).
    [CrossRef]
  2. V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
    [CrossRef]
  3. G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
    [CrossRef]
  4. G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
    [CrossRef]
  5. N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
    [CrossRef]
  6. G. Barani, A. Tofani, “Comparison of some algorithms commonly used in infrared pyrometry: computer simulation,” in Thermosense XIII, G. S. Baird, ed., Proc. SPIE1467, 458–468 (1991).
    [CrossRef]
  7. Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
    [CrossRef]
  8. S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
    [CrossRef]
  9. H. Jiang, Y. Qian, “High-speed multispectral infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
    [CrossRef]
  10. W. F. Kosonocky, M. B. Kaplinsky, N. J. McCaffrey, “Multiwavelength imaging pyrometer,” in Infrared Detectors and Focal Plane Arrays III, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2225, 26–43 (1994).
    [CrossRef]
  11. P. B. Coates, “Multi-wavelength pyrometry,” Metrologia 17, 103–109 (1981).
    [CrossRef]
  12. K. Chrzanowski, M. Szulim, “Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems,” Appl. Opt. 37, 5051–5057 (1998).
    [CrossRef]
  13. T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
    [CrossRef]
  14. Z. Bielecki, K. Chrzanowski, T. Piatkowski, M. Szulim, “Multiband infrared pyrometer,” in National Congress of Metrology (Gdansk, Poland (1998) Vol. 4, pp. 121–128.
  15. A. Sala, Radiant Properties of Materials (PWN–Polish Scientific Publishiers, Warsaw, 1986).
  16. K. Chrzanowski, “Comparison of shortwave and longwave measuring thermal-imaging systems,” Appl. Opt. 34, 2888–2897 (1995).
    [CrossRef] [PubMed]
  17. K. Chrzanowski, “Experimental verification of a theory of the influence of measurement conditions on temperature measurement accuracy with IR systems,” Appl. Opt. 35, 3540–3547 (1996).
    [CrossRef] [PubMed]

1998 (1)

1996 (1)

1995 (2)

K. Chrzanowski, “Comparison of shortwave and longwave measuring thermal-imaging systems,” Appl. Opt. 34, 2888–2897 (1995).
[CrossRef] [PubMed]

T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
[CrossRef]

1993 (1)

H. Jiang, Y. Qian, “High-speed multispectral infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

1992 (2)

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
[CrossRef]

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

1991 (1)

N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
[CrossRef]

1990 (1)

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

1989 (1)

V. Tank, “Infrared temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 29, 211–212 (1989).
[CrossRef]

1986 (1)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

1985 (1)

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
[CrossRef]

1981 (1)

P. B. Coates, “Multi-wavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

Allemand, C.

N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
[CrossRef]

Allemand, C. D.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
[CrossRef]

Anbar, M.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Barani, G.

G. Barani, A. Tofani, “Comparison of some algorithms commonly used in infrared pyrometry: computer simulation,” in Thermosense XIII, G. S. Baird, ed., Proc. SPIE1467, 458–468 (1991).
[CrossRef]

Beaudoin, J.

T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
[CrossRef]

Bielecki, Z.

Z. Bielecki, K. Chrzanowski, T. Piatkowski, M. Szulim, “Multiband infrared pyrometer,” in National Congress of Metrology (Gdansk, Poland (1998) Vol. 4, pp. 121–128.

Chrzanowski, K.

Coates, P. B.

P. B. Coates, “Multi-wavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

Dietl, H.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Duvaut, T.

T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
[CrossRef]

Eagar, T. W.

N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
[CrossRef]

Estrada, K. R.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
[CrossRef]

Georgeault, D.

T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
[CrossRef]

Hejazi, S.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Hottel, H. C.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
[CrossRef]

Hunter, G. B.

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
[CrossRef]

Jiang, H.

H. Jiang, Y. Qian, “High-speed multispectral infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

Kaplinsky, M. B.

W. F. Kosonocky, M. B. Kaplinsky, N. J. McCaffrey, “Multiwavelength imaging pyrometer,” in Infrared Detectors and Focal Plane Arrays III, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2225, 26–43 (1994).
[CrossRef]

Khan, N. A.

N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
[CrossRef]

Kosonocky, W. F.

W. F. Kosonocky, M. B. Kaplinsky, N. J. McCaffrey, “Multiwavelength imaging pyrometer,” in Infrared Detectors and Focal Plane Arrays III, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2225, 26–43 (1994).
[CrossRef]

Levendis, Y. A.

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
[CrossRef]

McCaffrey, N. J.

W. F. Kosonocky, M. B. Kaplinsky, N. J. McCaffrey, “Multiwavelength imaging pyrometer,” in Infrared Detectors and Focal Plane Arrays III, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2225, 26–43 (1994).
[CrossRef]

Piatkowski, T.

Z. Bielecki, K. Chrzanowski, T. Piatkowski, M. Szulim, “Multiband infrared pyrometer,” in National Congress of Metrology (Gdansk, Poland (1998) Vol. 4, pp. 121–128.

Qian, Y.

H. Jiang, Y. Qian, “High-speed multispectral infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

Sala, A.

A. Sala, Radiant Properties of Materials (PWN–Polish Scientific Publishiers, Warsaw, 1986).

Spangler, R. A.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Szulim, M.

K. Chrzanowski, M. Szulim, “Measure of the influence of detector noise on temperature-measurement accuracy for multiband infrared systems,” Appl. Opt. 37, 5051–5057 (1998).
[CrossRef]

Z. Bielecki, K. Chrzanowski, T. Piatkowski, M. Szulim, “Multiband infrared pyrometer,” in National Congress of Metrology (Gdansk, Poland (1998) Vol. 4, pp. 121–128.

Tank, V.

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

V. Tank, “Infrared temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 29, 211–212 (1989).
[CrossRef]

Tofani, A.

G. Barani, A. Tofani, “Comparison of some algorithms commonly used in infrared pyrometry: computer simulation,” in Thermosense XIII, G. S. Baird, ed., Proc. SPIE1467, 458–468 (1991).
[CrossRef]

Wobschall, D. C.

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

Appl. Opt. (3)

Infrared Phys. (2)

V. Tank, “Infrared temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 29, 211–212 (1989).
[CrossRef]

V. Tank, H. Dietl, “Multispectral infrared pyrometer for temperature measurement with automatic correction of the influence of emissivity,” Infrared Phys. 30, 331–342 (1990).
[CrossRef]

Infrared Phys. Technol. (1)

T. Duvaut, D. Georgeault, J. Beaudoin, “Multiwavelength infrared pyrometry: optimization and computer simulations,” Infrared Phys. Technol. 36, 1089–1103 (1995).
[CrossRef]

Metrologia (1)

P. B. Coates, “Multi-wavelength pyrometry,” Metrologia 17, 103–109 (1981).
[CrossRef]

Opt. Eng. (4)

S. Hejazi, D. C. Wobschall, R. A. Spangler, M. Anbar, “Scope and limitation of thermal imaging using multiwavelength infrared detection,” Opt. Eng. 31, 2383–2392 (1992).
[CrossRef]

H. Jiang, Y. Qian, “High-speed multispectral infrared imaging,” Opt. Eng. 32, 1281–1289 (1993).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Multiwavelength pyrometry: an improved method,” Opt. Eng. 24, 1081–1085 (1985).
[CrossRef]

G. B. Hunter, C. D. Allemand, T. W. Eagar, “Prototype device for multiwavelength pyrometry,” Opt. Eng. 25, 1222–1231 (1986).
[CrossRef]

Rev. Sci. Instrum. (2)

N. A. Khan, C. Allemand, T. W. Eagar, “Non-contact temperature measurement: least squares based techniques,” Rev. Sci. Instrum. 62, 403–409 (1991).
[CrossRef]

Y. A. Levendis, K. R. Estrada, H. C. Hottel, “Development of multicolor pyrometers to monitor transient response of burning carbonaceous particles,” Rev. Sci. Instrum. 63, 3608–3621 (1992).
[CrossRef]

Other (4)

W. F. Kosonocky, M. B. Kaplinsky, N. J. McCaffrey, “Multiwavelength imaging pyrometer,” in Infrared Detectors and Focal Plane Arrays III, E. L. Dereniak, R. E. Sampson, eds., Proc. SPIE2225, 26–43 (1994).
[CrossRef]

G. Barani, A. Tofani, “Comparison of some algorithms commonly used in infrared pyrometry: computer simulation,” in Thermosense XIII, G. S. Baird, ed., Proc. SPIE1467, 458–468 (1991).
[CrossRef]

Z. Bielecki, K. Chrzanowski, T. Piatkowski, M. Szulim, “Multiband infrared pyrometer,” in National Congress of Metrology (Gdansk, Poland (1998) Vol. 4, pp. 121–128.

A. Sala, Radiant Properties of Materials (PWN–Polish Scientific Publishiers, Warsaw, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relative sensitivity s(λ) of the assumed detectors.

Fig. 2
Fig. 2

Standard deviation of output temperature dispersion σT due to the detector noise.

Fig. 3
Fig. 3

Standard deviation of output temperature dispersion σT due to the limited resolution of the digitization system.

Fig. 4
Fig. 4

Standard deviation of output temperature dispersion σT due to the variations of detector responsivity and electronic gain.

Fig. 5
Fig. 5

Standard deviation of output temperature dispersion σT due to assumed random difference between the assumed type of the emissivity curve and the real one.

Fig. 6
Fig. 6

Errors of temperature measurement ΔT due to limited transmission of the atmosphere.

Fig. 7
Fig. 7

Errors of temperature measurement ΔT caused by radiation emitted by background radiation.

Tables (1)

Tables Icon

Table 1 System Parameters Used in the Calculations

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

S1=fTob, εobλ1, Tback,,S2=fTob, εobλ2, Tback,,Sn=fTob, εobλn, Tback,,
εobλ=fao,, am, λ.
S1Tob=εao,, am-2, λ SbbTout, λ1, Δλ1+Sopt1Topt,SnTob=εao, , am-2, λ SbbTout, λn, Δλn+SoptnTopt,
εobλ=a0+a1λ++am-2λm-2.
SbbnTout=gnRn*Adn4F2+1Δλn MTout±ΔTcal, λτoλτFnλsnλdλ,
Soptn=gnRn*Adn4F2+1Δλdn MTopt, λ εoptλsnλdλ,
S1=g1R1*Adn4F2+1a0+a1λ1++am-2λ1m-2×Δλ1 MTout±ΔTcal, λτoλτF1λs1λdλ+Δλd1 MTopt, λ εoptλs1λdλ,Sn=gnRn*Adn4F2+1a0+a1λn++am-2λnm-2×Δλn MTout±ΔTcal, λτoλτFnλsnλdλ+Δλdn MTopt, λ εoptλsnλdλ.
Sn=εobλΔλn MTob, λτaλτoλτFnλsnλdλ+1-εobλΔλn εbackλ×MTback, λτaλτoλτFnλsnλdλ+Δλdn MToptr, λ εoptλsnλdλ×Rn*±σRn*Adn4F2+1gn±σgn±Van±Vdn,
Van=2gnRn*AdnΔfn1/2Dn*,
Vdn=LSBn12.
LSBn=Smaxn-Sminn2k,

Metrics