Abstract

Projected random patterns have been used to measure the shape of discontinuous objects. A sequence of independent random patterns are projected onto the object. These images are analyzed by use of the technique called temporal digital speckle photography (DSP) that is introduced here. With temporal DSP the spatial resolution of the shape measurement is improved considerably compared with previously reported results with projected random patterns. A calibration procedure is described that uses a sequence of independent random patterns to calibrate measurement volume. As a result, independent space coordinates for each subimage are obtained. The accuracy is of the order of 1/1000 of the field of view where a subimage size of 8 pixels seems to be a good compromise between reliability and spatial resolution. The technique is illustrated with a measurement of an electrical plug and a 9-V battery.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Brooks, L. O. Heflinger, “Moiré gauging using optical interference patterns,” Appl. Opt. 8, 935–939 (1969).
    [CrossRef] [PubMed]
  2. G. Indebetouw, “Profile measurement using projection of running fringes,” Appl. Opt. 17, 2930–2933 (1978).
    [CrossRef] [PubMed]
  3. M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement of 3-D object shape,” Appl. Opt. 22, 3977–3982 (1983).
    [CrossRef]
  4. V. Srinivasan, H. C. Liu, M. Halioua, “Automated phase-measuring profilometry of 3-D diffuse objects,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef] [PubMed]
  5. M. Sjödahl, P. Synnergren, P. Johnson, “Applications of digital speckle photography in experimental mechanics,” in Lasers and Optics in Manufacturing, C. Gorecki, ed., Proc. SPIE3098, 195–203 (1997).
  6. M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
    [CrossRef] [PubMed]
  7. H. O. Saldner, J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36, 2770–2775 (1997).
    [CrossRef] [PubMed]
  8. H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
    [CrossRef]
  9. P. Synnergren, “Measurement of three-dimensional displacement fields and shape using electronic speckle photography,” Opt. Eng. 36, 2302–2310 (1997).
    [CrossRef]
  10. M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
    [CrossRef] [PubMed]
  11. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).
  12. H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

1997 (4)

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

P. Synnergren, “Measurement of three-dimensional displacement fields and shape using electronic speckle photography,” Opt. Eng. 36, 2302–2310 (1997).
[CrossRef]

H. O. Saldner, J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36, 2770–2775 (1997).
[CrossRef] [PubMed]

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
[CrossRef] [PubMed]

1994 (1)

1984 (1)

1983 (1)

1978 (1)

1969 (1)

Bailey, H. H.

H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

Blackwell, F. W.

H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

Brooks, R. E.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).

Halioua, M.

Heflinger, L. O.

Huntley, J. M.

H. O. Saldner, J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36, 2770–2775 (1997).
[CrossRef] [PubMed]

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

Indebetouw, G.

Johnson, P.

M. Sjödahl, P. Synnergren, P. Johnson, “Applications of digital speckle photography in experimental mechanics,” in Lasers and Optics in Manufacturing, C. Gorecki, ed., Proc. SPIE3098, 195–203 (1997).

Liu, H. C.

Lowery, C. L.

H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

Mutoh, K.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).

Ratkovic, J. A.

H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

Saldner, H. O.

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

H. O. Saldner, J. M. Huntley, “Temporal phase unwrapping: application to surface profiling of discontinuous objects,” Appl. Opt. 36, 2770–2775 (1997).
[CrossRef] [PubMed]

Sjödahl, M.

M. Sjödahl, “Accuracy in electronic speckle photography,” Appl. Opt. 36, 2875–2885 (1997).
[CrossRef] [PubMed]

M. Sjödahl, “Electronic speckle photography: increased accuracy by nonintegral pixel shifting,” Appl. Opt. 33, 6667–6673 (1994).
[CrossRef] [PubMed]

M. Sjödahl, P. Synnergren, P. Johnson, “Applications of digital speckle photography in experimental mechanics,” in Lasers and Optics in Manufacturing, C. Gorecki, ed., Proc. SPIE3098, 195–203 (1997).

Srinivasan, V.

Synnergren, P.

P. Synnergren, “Measurement of three-dimensional displacement fields and shape using electronic speckle photography,” Opt. Eng. 36, 2302–2310 (1997).
[CrossRef]

M. Sjödahl, P. Synnergren, P. Johnson, “Applications of digital speckle photography in experimental mechanics,” in Lasers and Optics in Manufacturing, C. Gorecki, ed., Proc. SPIE3098, 195–203 (1997).

Takeda, M.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).

Appl. Opt. (7)

Opt. Eng. (2)

H. O. Saldner, J. M. Huntley, “Profilometry using temporal phase unwrapping and a spatial light modulator-based fringe projector,” Opt. Eng. 36, 610–615 (1997).
[CrossRef]

P. Synnergren, “Measurement of three-dimensional displacement fields and shape using electronic speckle photography,” Opt. Eng. 36, 2302–2310 (1997).
[CrossRef]

Other (3)

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes in C, 2nd ed. (Cambridge University, Cambridge, England, 1992).

H. H. Bailey, F. W. Blackwell, C. L. Lowery, J. A. Ratkovic, “Image correlation. Part I. Simulation and analysis,” (Rand Corporation, Santa Monica, Calif., 1976). 3

M. Sjödahl, P. Synnergren, P. Johnson, “Applications of digital speckle photography in experimental mechanics,” in Lasers and Optics in Manufacturing, C. Gorecki, ed., Proc. SPIE3098, 195–203 (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup used to measure the shape of an object within the measurement volume. A video projector projects a time sequence of independent random patterns onto the object. The appearance of each pattern is acquired by the CCD camera. Optical triangulation is obtained with the so-called translated lens setup.

Fig. 2
Fig. 2

Measured speckle displacement as the flat reference plate steps uniformly through the measurement volume.

Fig. 3
Fig. 3

Measurement volume filled with lines along which corresponding subimages should be projected to overlap (continuous lines). The variation in inclination of the continuous lines along the dashed line is given by Eq. (9).

Fig. 4
Fig. 4

One-dimensional correlation curves given by Eq. (10) (lower curve) and the correlation curve obtained if only the highest correlated subimage pair is used (upper curve).

Fig. 5
Fig. 5

Surface plot showing the profile of an electrical plug and a 9-V battery.

Tables (1)

Tables Icon

Table 1 Effect of Subimage Size

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

cΔx, Δy; t=-1H*ξ, ν; 0Hξ, ν; t,
e=a σ2B1-δδ1/2,
dx=ϕxz,  dy=ϕyz,
cΔx, Δy=-1t=0T H*ξ, ν; 0Hξ, ν; t,
ϕˆx=2ΔxmaxzT,  ϕˆy=2ΔymaxzT.
cΔx, Δy=-1k=0K H*k, ξ, ν; 0Hk, ξ, ν; k,
e=a σ2BK+11/21-δδ1/2.
ϕ˜xx, y, 0=ax+bxx+cxy, ϕ˜yx, y, 0=ay+byx+cyy,
ϕ˜xx, y, z=ϕ˜xx, y, 01-ln1-bxz-cxϕ˜yx, y, 0cyln1-cyz, ϕ˜yx, y, z=ϕ˜yx, y, 01-ln1-cyz-byϕ˜xx, y, 0bxln1-bxz,
cz=k=0Kq=0B-1p=0B-1 hˆk, p+kΔz-zϕ˜x, q+kΔz-zϕ˜y; khˆk, p, q; z0/Δzk=0Kq=0B-1p=0B-1 hˆ2k, p+kΔz-zϕ˜x, q+kΔz-zϕ˜y; kk=0Kq=0B-1p=0B-1 hˆ2k, p, q; z0/Δz1/2,
ez=a σ2Bϕ˜xK+11/21-δδ1/2,

Metrics