Abstract

We present an optical-fiber voltage sensor for 170-kV gas-insulated high-voltage switchgear. The sensor is based on the converse piezoelectric effect of quartz. The full voltage is applied to a cylinder-shaped quartz crystal. The resulting alternating piezoelectric deformation of the crystal is sensed by an elliptical-core dual-mode fiber, which is wound onto the circumferential crystal surface. The fiber is interrogated by low-coherence interferometry. We address the dielectric design of the sensor and verify its dielectric reliability under ac overvoltages and lightning impulse voltages. We then investigate the sensor performance, including accuracy, dynamic range, bandwidth, and temperature dependence.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Shibata, “A fiber optic electric field sensor using the electro-optic effect of Bi4Ge4O12,” in First International Conference on Optical Fibre Sensors, IEE Conf. Pub. (London)221, 164–168 (1983).
  2. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
    [Crossref]
  3. Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).
  4. T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
    [Crossref]
  5. T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
    [Crossref]
  6. S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
    [Crossref]
  7. A. F. Jaeger, L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–234 (1989).
    [Crossref]
  8. A. F. Jaeger, F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
    [Crossref]
  9. K. Bohnert, J. Nehring, “Fiber-optic sensing of electric field components,” Appl. Opt. 27, 4814–4818 (1988).
    [Crossref] [PubMed]
  10. K. Bohnert, J. Nehring, “Fiber-optic sensing of voltages by line integration of the electric field,” Opt. Lett. 14, 290–292 (1989).
    [Crossref] [PubMed]
  11. K. Bohnert, H. Brändle, G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE2360, 16–19 (1994).
    [Crossref]
  12. B. Y. Kim, J. N. Blake, S. Y. Huang, H. J. Shaw, “Use of highly elliptical-core fibers for two-mode fiber devices,” Opt. Lett. 12, 729–731 (1987).
    [Crossref] [PubMed]
  13. J. N. Blake, S. Y. Huang, B. Y. Kim, H. J. Shaw, “Strain effects on highly elliptical core two-mode fibers,” Opt. Lett. 12, 732–734 (1987).
    [Crossref] [PubMed]
  14. J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
    [Crossref]
  15. K. Bohnert, G. C. de Wit, J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
    [Crossref]
  16. J. Tichy, G. Gautschi, Piezoelektrische Messtechnik (Springer-Verlag, Berlin, 1950), references therein.
  17. J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57, 105–146 (1985).
    [Crossref]
  18. Y. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
    [Crossref] [PubMed]
  19. A. S. Gerges, T. P. Newson, D. A. Jackson, “Coherence tuned fiber optic sensing system, with self-initialization, based on a multimode laser diode,” Appl. Opt. 29, 4473–4480 (1990).
    [Crossref] [PubMed]
  20. Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
    [Crossref]
  21. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926–2929 (1980).
    [Crossref] [PubMed]
  22. A. Kumar, R. K. Varshney, “Propagation characteristics of dual mode elliptical-core optical fibers,” Opt. Lett. 14, 817–819 (1989).
    [Crossref] [PubMed]
  23. “Voltage transformers,” in International Standard IEC 186, 2nd ed. [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987]; “Requirements for electronic voltage transformers,” in International Standard IEC 44-7 [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987].
  24. K. Bohnert, P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–604 (1998).
    [Crossref]

1998 (1)

1995 (2)

A. F. Jaeger, F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
[Crossref]

K. Bohnert, G. C. de Wit, J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
[Crossref]

1992 (1)

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

1990 (3)

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

A. S. Gerges, T. P. Newson, D. A. Jackson, “Coherence tuned fiber optic sensing system, with self-initialization, based on a multimode laser diode,” Appl. Opt. 29, 4473–4480 (1990).
[Crossref] [PubMed]

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

1989 (4)

1988 (1)

1987 (3)

1985 (2)

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57, 105–146 (1985).
[Crossref]

1983 (1)

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

1980 (1)

Abe, Y.

Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).

Blake, J. N.

Bohnert, K.

K. Bohnert, P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–604 (1998).
[Crossref]

K. Bohnert, G. C. de Wit, J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
[Crossref]

K. Bohnert, J. Nehring, “Fiber-optic sensing of voltages by line integration of the electric field,” Opt. Lett. 14, 290–292 (1989).
[Crossref] [PubMed]

K. Bohnert, J. Nehring, “Fiber-optic sensing of electric field components,” Appl. Opt. 27, 4814–4818 (1988).
[Crossref] [PubMed]

K. Bohnert, H. Brändle, G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE2360, 16–19 (1994).
[Crossref]

Brändle, H.

K. Bohnert, H. Brändle, G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE2360, 16–19 (1994).
[Crossref]

Brice, J. C.

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57, 105–146 (1985).
[Crossref]

Brooks, J. L.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

Dandridge, A.

de Wit, G. C.

K. Bohnert, G. C. de Wit, J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
[Crossref]

Frosio, G.

K. Bohnert, H. Brändle, G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE2360, 16–19 (1994).
[Crossref]

Gautschi, G.

J. Tichy, G. Gautschi, Piezoelektrische Messtechnik (Springer-Verlag, Berlin, 1950), references therein.

Gerges, A. S.

Grattan, K. T. V.

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

Y. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[Crossref] [PubMed]

Higaki, M.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Horide, A.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Hosoe, K.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
[Crossref]

Huang, S. Y.

Ida, Y.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

Jackson, D. A.

Jaeger, A. F.

A. F. Jaeger, F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
[Crossref]

A. F. Jaeger, L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–234 (1989).
[Crossref]

Kaminishi, T.

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

Kim, B. Y.

Kobayashi, S.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Kumar, A.

Kurada, Y.

Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).

Kurosawa, K.

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

Kuwahara, H.

Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).

Kyuma, K.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

Meggitt, B. T.

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

Y. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[Crossref] [PubMed]

Mikami, N.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

Mitsui, T.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
[Crossref]

Miyamoto, S.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
[Crossref]

Mori, E.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Nehring, J.

Newson, T. P.

Ning, Y.

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

Y. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[Crossref] [PubMed]

Nunoshita, M.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

Palmer, A. W.

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

Y. Ning, K. T. V. Grattan, B. T. Meggitt, A. W. Palmer, “Characteristics of laser diodes for interferometric use,” Appl. Opt. 28, 3657–3661 (1989).
[Crossref] [PubMed]

Pequignot, P.

Priest, R.

Rahmatian, F.

A. F. Jaeger, F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
[Crossref]

Sawa, T.

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

Shaw, H. J.

Shibata, K.

K. Shibata, “A fiber optic electric field sensor using the electro-optic effect of Bi4Ge4O12,” in First International Conference on Optical Fibre Sensors, IEE Conf. Pub. (London)221, 164–168 (1983).

Tai, S.

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

Takagi, I.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Takahashi, G.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Tichy, J.

J. Tichy, G. Gautschi, Piezoelektrische Messtechnik (Springer-Verlag, Berlin, 1950), references therein.

Tur, M.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

Tveten, A. B.

Usami, H.

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
[Crossref]

Varshney, R. K.

Wentworth, R. H.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

Yamagiwa, T.

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

Yokata, T.

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

Yoshinaga, K.

Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).

Young, L.

A. F. Jaeger, L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–234 (1989).
[Crossref]

Youngquist, R. C.

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

Appl. Opt. (4)

IEEE Trans. Power Delivery (4)

T. Mitsui, K. Hosoe, H. Usami, S. Miyamoto, “Development of fiber-optic voltage sensors and magnetic-field sensors,” IEEE Trans. Power Delivery 2, 87–93 (1987).
[Crossref]

T. Sawa, K. Kurosawa, T. Kaminishi, T. Yokata, “Development of optical instrument transformers,” IEEE Trans. Power Delivery 5, 884–890 (1990).
[Crossref]

S. Kobayashi, A. Horide, I. Takagi, M. Higaki, G. Takahashi, E. Mori, T. Yamagiwa, “Development and field test evaluation of optical current and voltage transformers for gas insulated switchgear,” IEEE Trans. Power Delivery 7, 815–821 (1992).
[Crossref]

A. F. Jaeger, F. Rahmatian, “Integrated optics Pockels cell high-voltage sensor,” IEEE Trans. Power Delivery 10, 127–134 (1995).
[Crossref]

J. Lightwave Technol. (6)

K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-optic current and voltage sensors using a single Bi12GeO20 crystal,” J. Lightwave Technol. 1, 93–97 (1983).
[Crossref]

A. F. Jaeger, L. Young, “High-voltage sensor employing an integrated optics Mach-Zehnder interferometer in conjunction with a capacitive divider,” J. Lightwave Technol. 7, 229–234 (1989).
[Crossref]

Y. Ning, K. T. V. Grattan, A. W. Palmer, B. T. Meggitt, “Characteristics of a multimode laser diode in a dual-interferometer configuration,” J. Lightwave Technol. 8, 1773–1778 (1990).
[Crossref]

J. L. Brooks, R. H. Wentworth, R. C. Youngquist, M. Tur, B. Y. Kim, H. J. Shaw, “Coherence multiplexing of fiber-optic interferometric sensors,” J. Lightwave Technol. 3, 1062–1072 (1985).
[Crossref]

K. Bohnert, G. C. de Wit, J. Nehring, “Coherence-tuned interrogation of a remote, elliptical-core, dual-mode fiber strain sensor,” J. Lightwave Technol. 13, 94–103 (1995).
[Crossref]

K. Bohnert, P. Pequignot, “Inherent temperature compensation of a dual-mode fiber voltage sensor with coherence-tuned interrogation,” J. Lightwave Technol. 16, 598–604 (1998).
[Crossref]

Opt. Lett. (4)

Rev. Mod. Phys. (1)

J. C. Brice, “Crystals for quartz resonators,” Rev. Mod. Phys. 57, 105–146 (1985).
[Crossref]

Other (5)

“Voltage transformers,” in International Standard IEC 186, 2nd ed. [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987]; “Requirements for electronic voltage transformers,” in International Standard IEC 44-7 [International Electrotechnical Commission (IEC), Geneva, Switzerland, 1987].

K. Bohnert, H. Brändle, G. Frosio, “Field test of interferometric optical fiber high-voltage and current sensors,” in Tenth International Conference on Optical Fibre Sensors, B. Culshaw, J. D. C. Jones, eds., Proc. SPIE2360, 16–19 (1994).
[Crossref]

J. Tichy, G. Gautschi, Piezoelektrische Messtechnik (Springer-Verlag, Berlin, 1950), references therein.

Y. Kurada, Y. Abe, H. Kuwahara, K. Yoshinaga, “Field test of fiber-optic voltage and current sensors applied to gas insulated substation,” in Fiber Optic Sensors, H. J. Arditty, L. B. Jeunhomme, eds., Proc. SPIE586, 30–37 (1985).

K. Shibata, “A fiber optic electric field sensor using the electro-optic effect of Bi4Ge4O12,” in First International Conference on Optical Fibre Sensors, IEE Conf. Pub. (London)221, 164–168 (1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Sensor configuration.

Fig. 2
Fig. 2

Crystal housing.

Fig. 3
Fig. 3

Photograph of crystal housing. The overall height of the housing is 26 cm.

Fig. 4
Fig. 4

Voltage sensor in SF6 GIS.

Fig. 5
Fig. 5

Lines of equipotential (left half-plane of longitudinal section through crystal housing). The locations of relative field maxima at various contours are marked with arrows. The corresponding field strengths are listed in Table 1.

Fig. 6
Fig. 6

Electric-field strength along the quartz crystal at the peak of a 750-kV lightning impulse.

Fig. 7
Fig. 7

Relative electric-field strength along the contour of the fiber cross section (on coating surface). The relative field strength without fiber is assumed to be unity.

Fig. 8
Fig. 8

(a) Sensor signal calibrated in terms of differential modal phase shift versus applied voltage. (b) Relative deviation from a conventional voltage measurement.

Fig. 9
Fig. 9

Sensor signal versus transducer temperature.

Fig. 10
Fig. 10

Relative difference in percent between optical and conventional voltage measurements versus time during a field test at a nominal line voltage of 63.5 kV rms.

Tables (1)

Tables Icon

Table 1 Maxima of the Electric Field at Various Parts of the Crystal Housinga

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I±=I01±V cosϕr-ϕs.
ϕst=ϕ0,s sin ωt+θst,

Metrics