Abstract

We present measurements of the spatial response of infrared dipole and bow-tie lithographic antennas. Focused 10.6-µm radiation was scanned in two dimensions across the receiving area of each antenna. Deconvolution of the beam profile allowed the spatial response to be measured. The in-plane width of the antenna’s spatial response extends approximately one dielectric wavelength beyond the metallic structure. Determination of an antenna’s spatial response is important for several reasons. The power collected by the antenna can be calculated, if the collection area and the input irradiance (watts per square centimeter) are known. The actual power collected by the antenna is required for computation of responsivity and noise-equivalent power. In addition, the spatial response provides insight into the current-wave modes that propagate on an antenna and the nature of the fringe fields that exist in the adjacent dielectric.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.
  2. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
    [CrossRef]
  3. J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
    [CrossRef]
  4. E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977).
    [CrossRef]
  5. I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
    [CrossRef]
  6. I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
    [CrossRef]
  7. C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
    [CrossRef]
  8. E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
    [CrossRef]
  9. J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).
  10. G. D. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Modulation transfer function of antenna-coupled infrared detector arrays,” Appl. Opt. 35, 6110–6114 (1996).
    [CrossRef] [PubMed]
  11. D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).
  12. L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
    [CrossRef]
  13. S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
    [CrossRef]
  14. C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
    [CrossRef]
  15. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
    [CrossRef]
  16. C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
    [CrossRef]
  17. C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
    [CrossRef]
  18. M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
    [CrossRef]
  19. G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).
  20. R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
    [CrossRef]
  21. M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
    [CrossRef]
  22. Y. Suzaki, A. Tachibana, “Measurement of the µm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14, 2809–2810 (1975).
    [CrossRef] [PubMed]
  23. M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).
  24. E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 13.
  25. R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

1998

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

1997

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

1996

G. D. Boreman, A. Dogariu, C. Christodoulou, D. Kotter, “Modulation transfer function of antenna-coupled infrared detector arrays,” Appl. Opt. 35, 6110–6114 (1996).
[CrossRef] [PubMed]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

1994

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

1991

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

1987

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

1981

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

1978

D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

1977

E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977).
[CrossRef]

1975

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
[CrossRef]

Y. Suzaki, A. Tachibana, “Measurement of the µm sized radius of Gaussian laser beam using the scanning knife-edge,” Appl. Opt. 14, 2809–2810 (1975).
[CrossRef] [PubMed]

1974

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

1968

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

1952

G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Abramowitz, M.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).

Adams, A. T.

D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).

Bachner, F. J.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Boreman, G. D.

Bracewell, R. N.

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

Brewitt-Taylor, C. R.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Brown, G. H.

G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Christodoulou, C.

Compton, R.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Daneu, V.

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

De Natale, P.

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Dereniak, E. L.

E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 13.

Dogariu, A.

Elchinger, G. M.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

Fumeaux, C.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Grossman, E. N.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Gunton, D. J.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

Gustafson, T. K.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

Herrmann, W.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Hocker, L. O.

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Izawa, T.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
[CrossRef]

Javan, A.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Kasilingam, D. P.

D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.

Kneubühl, F. K.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977).
[CrossRef]

Kotter, D.

Kraus, J. D.

J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).

Lipphardt, B.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

McDonald, D. G.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

McPhedran, R.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

Neikirk, D. P.

D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.

Oppliger, Y.

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Popovic, Z.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Rebeiz, G.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Rees, H. D.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

Rothuizen, H.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, G. D. Boreman, W. Herrmann, H. Rothuizen, F. K. Kneubühl, “Polarization response of asymmetric-spiral infrared antennas,” Appl. Opt. 36, 6485–6490 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Rutledge, D. B.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).

D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.

Sanchez, A.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Sauvageau, J. E.

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Schwarz, S. E.

D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).

Small, J. G.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Smythe, D. L.

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

Sokoloff, D. R.

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Stegun, I.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).

Suzaki, Y.

Szoke, A.

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

Tachibana, A.

Tong, P. P.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

Wang, S.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

Wang, S. Y.

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
[CrossRef]

Weiss, C.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

Weiss, C. O.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

Whinnery, J. R.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

Wiesendanger, E.

E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977).
[CrossRef]

Wilke, I.

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Woodward, O. M.

G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Appl. Opt.

Appl. Phys.

D. B. Rutledge, S. E. Schwarz, A. T. Adams, “Infrared and submillimeter antennas,” Appl. Phys. 18, 713–729 (1978).

E. Wiesendanger, F. K. Kneubühl, “Thin-film MOM-diodes for infrared detection,” Appl. Phys. 13, 343–349 (1977).
[CrossRef]

Appl. Phys. A

I. Wilke, Y. Oppliger, W. Herrmann, F. K. Kneubühl, “Nanometer thin-film Ni-NiO-Ni diodes for 30 THz radiation,” Appl. Phys. A 58, 329–341 (1994).
[CrossRef]

Appl. Phys. B

I. Wilke, W. Herrmann, F. K. Kneubühl, “Integrated nanostrip dipole antennas for coherent 30 THz infrared radiation,” Appl. Phys. B 58, 87–95 (1994).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. Weiss, “Nanometer thin-film Ni-NiO-Ni diodes for mixing 28 THz CO2-laser emissions with difference frequencies up to 176 GHz,” Appl. Phys. B 66, 327–332 (1998).
[CrossRef]

C. Fumeaux, W. Herrmann, H. Rothuizen, P. De Natale, F. K. Kneubühl, “Mixing of 30 THz laser radiation with nanometer thin-film Ni-NiO-Ni diodes and integrated bow-tie antennas,” Appl. Phys. B 63, 135–140 (1996).
[CrossRef]

Appl. Phys. Lett.

L. O. Hocker, D. R. Sokoloff, V. Daneu, A. Szoke, A. Javan, “Frequency mixing in the infrared and far-infrared using a metal-to-metal point contact diode,” Appl. Phys. Lett. 12, 401–402 (1968).
[CrossRef]

S. Y. Wang, T. Izawa, T. K. Gustafson, “Coupling characteristics of thin-film metal-oxide-metal diodes at 10.6 µm,” Appl. Phys. Lett. 27, 481–483 (1975).
[CrossRef]

J. G. Small, G. M. Elchinger, A. Javan, A. Sanchez, F. J. Bachner, D. L. Smythe, “AC electron tunneling at infrared frequencies: thin-film M-O-M diode structure with broad-band characteristics,” Appl. Phys. Lett. 24, 275–279 (1974).
[CrossRef]

E. N. Grossman, J. E. Sauvageau, D. G. McDonald, “Lithographic spiral antennas at short wavelengths,” Appl. Phys. Lett. 59, 3225–3227 (1991).
[CrossRef]

Electron. Lett.

C. R. Brewitt-Taylor, D. J. Gunton, H. D. Rees, “Planar antennas on a dielectric surface,” Electron. Lett. 17, 729–730 (1981).
[CrossRef]

IEEE J. Quantum Electron.

M. Heiblum, S. Wang, J. R. Whinnery, T. K. Gustafson, “Characteristics of integrated MOM junctions at dc and at optical frequencies,” IEEE J. Quantum Electron. 14, 159–169 (1978).
[CrossRef]

IEEE Trans. Antennas Propag.

R. Compton, R. McPhedran, Z. Popovic, G. Rebeiz, P. P. Tong, D. B. Rutledge, “Bow-tie antennas on a dielectric half-space: theory and experiment,” IEEE Trans. Antennas Propag. 35, 622–631 (1987).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microwave Theory Tech. 39, 910–915 (1991).
[CrossRef]

Infrared Phys. Technol.

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, B. Lipphardt, C. O. Weiss, “Mixing of 28 THz (10.7 µm) CO2-laser radiation by nanometer thin-film Ni-NiO-Ni diodes with difference frequencies up to 176 GHz,” Infrared Phys. Technol. 38, 393–396 (1997).
[CrossRef]

C. Fumeaux, W. Herrmann, F. K. Kneubühl, H. Rothuizen, “Nanometer thin-film Ni-NiO-Ni diodes for detection and mixing of 30 THz radiation,” Infrared Phys. Technol. 39, 123–183 (1998).
[CrossRef]

RCA Rev.

G. H. Brown, O. M. Woodward, “Experimentally determined radiation characteristics of conical and triangular antennas,” RCA Rev. 13, 425–452 (1952).

Other

J. D. Kraus, Antennas, 2nd ed. (McGraw-Hill, New York, 1988).

D. B. Rutledge, D. P. Neikirk, D. P. Kasilingam, “Integrated-circuit antennas,” in Infrared and Millimeter Waves, K. J. Button, ed. (Academic, New York, 1983), Vol. 10.

M. Abramowitz, I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1968).

E. L. Dereniak, G. D. Boreman, Infrared Detectors and Systems (Wiley, New York, 1996), Chap. 13.

R. N. Bracewell, The Fourier Transform and Its Applications, 2nd ed. (McGraw-Hill, New York, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of the antenna structure, showing the Ni–NiO–Ni diode, Si substrate, SiO2 matching layers, and gold reflector.

Fig. 2
Fig. 2

Electron micrograph of an IR dipole antenna coupled to a MOM diode, showing the readout connections.

Fig. 3
Fig. 3

Electron micrograph of an IR bow-tie antenna of total length L = 4.6 µm coupled to a MOM diode.

Fig. 4
Fig. 4

Experimental apparatus for spatial-response measurement of IR antennas.

Fig. 5
Fig. 5

(a) Scan configuration of an IR antenna in the focused laser beam. (b) Scan data V max(x) and V max(y) were acquired for the electric field E polarized parallel to the along-arm direction, whereas V min(x) and V min(y) were acquired with polarization in the cross-arm direction.

Fig. 6
Fig. 6

(a) Typical dipole scan data for V max(x) and V min(x) and fitted curves corresponding to Eqs. (7) and (8), which allowed values of x therm and x ant to be determined. (b) Typical dipole scan data for V max(y) and V min(y) and fitted curves corresponding to Eqs. (7) and (8), which allowed values of y therm and y ant to be determined.

Fig. 7
Fig. 7

Irradiance inside the substrate just below the antenna is the coherent sum of the two Gaussian beams with different widths and powers that arise from reflection at the first SiO2–Si interface and from the gold mirror.

Fig. 8
Fig. 8

Measured signal (filled circles) as a function of angle of incidence θ showing oscillations caused by substrate interference (dotted curve). Fitting the data to a two-beam interference curve allows determination of the phase Ψ r = 127.32° for the particular chip.

Fig. 9
Fig. 9

Calculations of beam profile incident on the antenna with Eq. (3). The measured substrate phases for the two chips shown were Ψ r = 21.28° and Ψ r = 127.32°. The plots demonstrate that constructive interference not only enhances the beam irradiance, but that it also broadens the beam profile, measured as the full width at half-maximum (FWHM). Similarly, while destructive interference decreases the beam irradiance, it also narrows the beam profile, compared with the best-focus Gaussian beam measured by the knife-edge test.

Fig. 10
Fig. 10

Impulse-response half-widths x therm/2 and x ant/2 for the four types of antenna-coupled detectors measured as a function of the antenna–arm half-length L/2. These scans were made in the along-arm (x) direction.

Fig. 11
Fig. 11

Impulse-response half-widths y therm/2 and y ant/2 for the four types of antenna-coupled detectors measured as a function of the antenna-arm half-length L/2. These scans were made in the cross-arm (y) direction.

Fig. 12
Fig. 12

Pictorial representation of the two different collection areas (antenna-coupled and thermal) measured for a dipole antenna of half-length L/2 = 1.55 µm. The radiation incident was at 10.6 µm with an effective wavelength inside the substrate of 3.1 µm.

Tables (1)

Tables Icon

Table 1 Collection Areas Acoll of the Thermal and Antenna-Coupled Responses for Each Antenna Typea

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Aeθ, ϕ=λ24π ηDθ, ϕ,
PfPo=Tsubst21-SR10.611-0.520.0734,
Bx=B1x+B2x+2B1xB2x1/2 cos Ψr with B1x=B0 exp-2x-x02w02, B2x=B0w02wi2PoPfexp-2x-x02wi2.
hmeasx=Bx*hdetx.
hthermx=rectx/xtherm, hantx=rectx/xant,
Vminx=A1x-+ Bξhthermx-ξdξ,
Vminx=A1x-xtherm/2+xtherm/2 Bx-ξdξ.
Vmaxx=Vminx+ΔVx=Vminx+A2x-xant/2+xant/2 Bx-ξdξ.
V/W=VoutVEinW/cm2×Acollcm2.

Metrics