Abstract

An optical imaging technique that is believed to be novel was developed for noninvasive cross-sectional imaging of tissuelike turbid media. By use of a sonoluminescence signal generated internally in the media with a 1-MHz continuous-wave ultrasound, two-dimensional images were produced for objects embedded in turbid media by a raster scan of the media. Multiple objects of different shapes were resolved with this imaging technique. The images showed a high contrast and good spatial resolution. The spatial resolution was limited by the focal size of the ultrasonic focus.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).
  2. B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).
  3. L.-H. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 181–186.
  4. H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).
  5. B. P. Barber, S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature352 (London), 318–320 (1991).
  6. E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991).
    [CrossRef]
  7. L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992).
    [CrossRef]
  8. C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).
    [CrossRef] [PubMed]
  9. W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
    [CrossRef]
  10. L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994).
    [CrossRef] [PubMed]
  11. C. Eberlein, “Sonoluminescence as quantum vacuum radiation,” Phys. Rev. Lett. 76, 3842–3845 (1996).
    [CrossRef] [PubMed]
  12. J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
    [CrossRef] [PubMed]
  13. B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
    [CrossRef]
  14. L.-H. V. Wang, Q. Shen, “Sonoluminescent tomography of strongly scattering media,” Opt. Lett. 23, 561–563 (1998).
    [CrossRef]
  15. R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995).
    [CrossRef]
  16. W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
    [CrossRef]
  17. L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,” J. Acoust. Soc. Am. 95, 559–562 (1994).
    [CrossRef]
  18. Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
    [CrossRef]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]
  20. L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
    [CrossRef] [PubMed]
  21. F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
    [CrossRef]
  22. T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).
  23. S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
    [CrossRef] [PubMed]

1998 (1)

1997 (1)

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

1996 (2)

C. Eberlein, “Sonoluminescence as quantum vacuum radiation,” Phys. Rev. Lett. 76, 3842–3845 (1996).
[CrossRef] [PubMed]

J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
[CrossRef] [PubMed]

1995 (4)

R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995).
[CrossRef]

L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
[CrossRef] [PubMed]

1994 (4)

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,” J. Acoust. Soc. Am. 95, 559–562 (1994).
[CrossRef]

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994).
[CrossRef] [PubMed]

1993 (1)

C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).
[CrossRef] [PubMed]

1992 (1)

L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992).
[CrossRef]

1991 (3)

E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991).
[CrossRef]

Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
[CrossRef]

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

1990 (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

1934 (1)

H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).

Barber, B. P.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995).
[CrossRef]

B. P. Barber, S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature352 (London), 318–320 (1991).

Bihrle, R.

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Clarke, D. B.

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

Crum, L. A.

L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,” J. Acoust. Soc. Am. 95, 559–562 (1994).
[CrossRef]

L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994).
[CrossRef] [PubMed]

L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992).
[CrossRef]

Daniels, S.

S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
[CrossRef] [PubMed]

Didenko, Y. T.

Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
[CrossRef]

Eberlein, C.

C. Eberlein, “Sonoluminescence as quantum vacuum radiation,” Phys. Rev. Lett. 76, 3842–3845 (1996).
[CrossRef] [PubMed]

Flint, E. B.

E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991).
[CrossRef]

Foster, R. S.

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

Frenzel, H.

H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).

Fry, F. J.

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

Gordeychuk, T. V.

Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
[CrossRef]

Hennige, C.

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

Hiller, R. A.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995).
[CrossRef]

Jacques, S. L.

L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 181–186.

Kang, W.

J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
[CrossRef] [PubMed]

Kodama, T.

S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
[CrossRef] [PubMed]

Koretz, V. L.

Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
[CrossRef]

Löfstedt, R.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

Moes, C. J. M.

Moss, W. C.

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

Prahl, S. A.

H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400–1100 nm,” Appl. Opt. 30, 4507–4514 (1991).
[CrossRef] [PubMed]

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Price, D. J.

S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
[CrossRef] [PubMed]

Putterman, S.

L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992).
[CrossRef]

Putterman, S. J.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

B. P. Barber, S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature352 (London), 318–320 (1991).

Roberts, P. H.

C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).
[CrossRef] [PubMed]

Roy, R. A.

L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994).
[CrossRef] [PubMed]

Sanghvi, N. T.

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

Schmiedel, T.

J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
[CrossRef] [PubMed]

Schultes, H.

H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).

Shen, Q.

Suslick, K. S.

E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991).
[CrossRef]

van Gemert, M. J. C.

van Marie, J.

van Staveren, H. J.

Wang, L.-H.

L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

L.-H. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 181–186.

Wang, L.-H. V.

Welch, A. J.

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Weninger, K. R.

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

White, J. W.

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

Whittingham, T. A.

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

Wu, C. C.

C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).
[CrossRef] [PubMed]

Young, D. A.

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

Young, J. B.

J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
[CrossRef] [PubMed]

Zheng, L.

L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, L. Zheng, “MCML—Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166–2185 (1990).
[CrossRef]

Imaging (1)

T. A. Whittingham, “The safety of ultrasound,” Imaging 6, 33–51 (1994).

J. Acoust. Soc. Am. (2)

L. A. Crum, “Sonoluminescence, sonochemistry, and sonophysics,” J. Acoust. Soc. Am. 95, 559–562 (1994).
[CrossRef]

L. A. Crum, S. Putterman, “Sonoluminescence,” J. Acoust. Soc. Am. 91, 517 (1992).
[CrossRef]

J. Phys. Chem. (1)

E. B. Flint, K. S. Suslick, “Sonoluminescence from alkali-metal salt solutions,” J. Phys. Chem. 95, 1484–1488 (1991).
[CrossRef]

J. Sound Vib. (1)

Y. T. Didenko, T. V. Gordeychuk, V. L. Koretz, “The effect of ultrasound power on water sonoluminescence,” J. Sound Vib. 147, 409–416 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids (1)

W. C. Moss, D. B. Clarke, J. W. White, D. A. Young, “Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence,” Phys. Fluids 6, 2979–2985 (1994).
[CrossRef]

Phys. Rep. (1)

B. P. Barber, R. A. Hiller, R. Löfstedt, S. J. Putterman, K. R. Weninger, “Defining the unknowns of sonoluminescence,” Phys. Rep. 281, 65–143 (1997).
[CrossRef]

Phys. Rev. Lett. (3)

C. Eberlein, “Sonoluminescence as quantum vacuum radiation,” Phys. Rev. Lett. 76, 3842–3845 (1996).
[CrossRef] [PubMed]

J. B. Young, T. Schmiedel, W. Kang, “Sonoluminescence in high magnetic fields,” Phys. Rev. Lett. 77, 4816–4819 (1996).
[CrossRef] [PubMed]

C. C. Wu, P. H. Roberts, “Shock-wave propagation in a sonoluminescencing gas bubble,” Phys. Rev. Lett. 70, 3424–3427 (1993).
[CrossRef] [PubMed]

Sci. Am. (1)

R. A. Hiller, B. P. Barber, “Producing light from a bubble of air,” Sci. Am. 272, 96 (1995).
[CrossRef]

Science (1)

L. A. Crum, R. A. Roy, “Sonoluminescence,” Science 266, 233–234 (1994).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

F. J. Fry, N. T. Sanghvi, R. S. Foster, R. Bihrle, C. Hennige, “Ultrasound and microbubbles: their generation, detection and potential utilization in tissue and organ therapy—experimental,” Ultrasound Med. Biol. 21, 1227–1237 (1995).
[CrossRef]

S. Daniels, T. Kodama, D. J. Price, “Damage to red blood cells induced by acoustic cavitation,” Ultrasound Med. Biol. 21, 105–111 (1995).
[CrossRef] [PubMed]

Z. Phys. Chem. Abt. B (1)

H. Frenzel, H. Schultes, “Luminescenz im ultraschallbeschickten Wasser,” Z. Phys. Chem. Abt. B 27, 421–424 (1934).

Other (4)

B. P. Barber, S. J. Putterman, “Observation of synchronous picosecond sonoluminescence,” Nature352 (London), 318–320 (1991).

R. R. Alfano, J. G. Fujimoto, eds., Advances in Optical Imaging and Photon Migration, Vol. 2 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996).

B. Chance, R. R. Alfano, eds., Optical Tomography and Spectroscopy of Tissue: Theory, Instrumentation, Model, and Human Studies II, Proc. SPIE2979 (1997).

L.-H. Wang, S. L. Jacques, “Application of probability of n scatterings of light passing through an idealized tissue slab in breast imaging,” in Advances in Optical Imaging and Photon Migration, R. R. Alfano, ed., Vol. 21 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1994), pp. 181–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for SL imaging.

Fig. 2
Fig. 2

(a) SL column measured with a CCD camera. (b) Modeled sound column of the ultrasonic transducer.

Fig. 3
Fig. 3

SL intensity versus the driving voltage on the ultrasonic transducer.

Fig. 4
Fig. 4

(a) Reduced scattering spectra for the polystyrene phantom (solid curve) and for the Intralipid phantom (dashed curve). (b) Absorption spectra of the polystyrene phantom (solid curve) and the Intralipid phantom (dashed curve). (c) Diffuse transmittance versus the wavelength for the polystyrene phantom calculated with a Monte Carlo simulation.

Fig. 5
Fig. 5

(a) Schematic diagram of an 8 mm × 8 mm × 7 mm cubic object buried in the Intralipid phantom. (b) One-dimensional SL image horizontally across the center of the object (parallel with the x axis at y = 10 mm). (c) One-dimensional SL image vertically across the center of the object (parallel with the y axis at x = 10 mm). (d) Two-dimensional SL image of the object in the Intralipid phantom.

Fig. 6
Fig. 6

Two-dimensional SL image of the same object (see Fig. 5) buried in the polystyrene phantom.

Fig. 7
Fig. 7

(a) Schematic diagram of two rubber objects buried in the Intralipid phantom with a separation Δx. (b) One-dimensional SL images of the two objects along the x axis when the separation Δx was varied from 1 to 6 mm.

Fig. 8
Fig. 8

(a) Schematic diagram of two rubber objects with different shapes buried in the Intralipid phantom. (b) Two-dimensional SL image of the two differently shaped objects buried in the Intralipid phantom.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

pr, t=C spsexpjωt-ϕdds,

Metrics