Abstract

A magnetostrictively driven tilt-mirror mount for image stabilization of NASA’s Marshall Space Flight Center’s Experimental Vector Magnetograph has been designed, built, and tested. A simple improvement in the mounting technique of the actuator resulted in a factor of 3 increase in the lowest resonant frequency of the device. The tilt-mirror device was built, and the lowest structural resonant frequency was experimentally found to be 603 Hz.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Strohbehn, B. Kluga, D. M. Rust, “Fast, wide-dynamic range, low-voltage tip/tilt mirror,” in Acquisition, Tracking, and Pointing VIII, M. K. Masten, L. A. Stockum, M. M. Birnbaum, G. E. Sevaston, eds., Proc. SPIE.2221, 414–417 (1994).
  2. Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).
  3. O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).
  4. T. A. Darvann, “Foucault test atmospheric turbulence power spectra,” presented at the Workshop on Turbulence Power Spectral Density, Albuquerque, N.M., December 1989.
  5. M. Chimielowski, J. R. Taylor, “A real-time sunspot tracking algorithm,” Publ. Astron. Soc. Pacific 109, 837–842 (1997).
    [CrossRef]
  6. Edge Technologies, Etrema Terfenol-D Magnetostrictive Actuator, Model AA-090J025-ES1, 2500 North Loop Dr., Ames, Iowa 50010; ph. (515) 296–6045.
  7. Lucas Aerospace Power Transmission Corporation, Free-Flex Pivot, Model 5008-400, 211 Seward Ave., P.O. Box 457, Utica, New York 13503; ph. (315) 793–1200.
  8. Partial Differential Equation Toolbox User’s Guide (MathWorks, Natick, Mass., 1996), pp. 2-34–2-38.
  9. J. N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, 1993).
  10. Computer program labview Version 4.1, National Instruments, 6504 Bridge Point Pkwy, Austin, Tex. 78730-5039, 1997; ph. (512) 794–0100.

1997 (1)

M. Chimielowski, J. R. Taylor, “A real-time sunspot tracking algorithm,” Publ. Astron. Soc. Pacific 109, 837–842 (1997).
[CrossRef]

1988 (1)

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Chimielowski, M.

M. Chimielowski, J. R. Taylor, “A real-time sunspot tracking algorithm,” Publ. Astron. Soc. Pacific 109, 837–842 (1997).
[CrossRef]

Darvann, T. A.

T. A. Darvann, “Foucault test atmospheric turbulence power spectra,” presented at the Workshop on Turbulence Power Spectral Density, Albuquerque, N.M., December 1989.

Dunn, R. B.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Kluga, B.

K. Strohbehn, B. Kluga, D. M. Rust, “Fast, wide-dynamic range, low-voltage tip/tilt mirror,” in Acquisition, Tracking, and Pointing VIII, M. K. Masten, L. A. Stockum, M. M. Birnbaum, G. E. Sevaston, eds., Proc. SPIE.2221, 414–417 (1994).

Reddy, J. N.

J. N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, 1993).

Rimmele, Th.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Rust, D. M.

K. Strohbehn, B. Kluga, D. M. Rust, “Fast, wide-dynamic range, low-voltage tip/tilt mirror,” in Acquisition, Tracking, and Pointing VIII, M. K. Masten, L. A. Stockum, M. M. Birnbaum, G. E. Sevaston, eds., Proc. SPIE.2221, 414–417 (1994).

Spence, G.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Strohbehn, K.

K. Strohbehn, B. Kluga, D. M. Rust, “Fast, wide-dynamic range, low-voltage tip/tilt mirror,” in Acquisition, Tracking, and Pointing VIII, M. K. Masten, L. A. Stockum, M. M. Birnbaum, G. E. Sevaston, eds., Proc. SPIE.2221, 414–417 (1994).

Taylor, J. R.

M. Chimielowski, J. R. Taylor, “A real-time sunspot tracking algorithm,” Publ. Astron. Soc. Pacific 109, 837–842 (1997).
[CrossRef]

von der Luthe, O.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Wiborg, P.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Wiborg, P. H.

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Widener, A. L.

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Astron. Astrophys. (1)

O. von der Luthe, A. L. Widener, Th. Rimmele, G. Spence, R. B. Dunn, P. Wiborg, “Solar feature correlation tracker for ground based telescopes,” Astron. Astrophys. 224, 351–360 (1988).

Publ. Astron. Soc. Pacific (1)

M. Chimielowski, J. R. Taylor, “A real-time sunspot tracking algorithm,” Publ. Astron. Soc. Pacific 109, 837–842 (1997).
[CrossRef]

Other (8)

Edge Technologies, Etrema Terfenol-D Magnetostrictive Actuator, Model AA-090J025-ES1, 2500 North Loop Dr., Ames, Iowa 50010; ph. (515) 296–6045.

Lucas Aerospace Power Transmission Corporation, Free-Flex Pivot, Model 5008-400, 211 Seward Ave., P.O. Box 457, Utica, New York 13503; ph. (315) 793–1200.

Partial Differential Equation Toolbox User’s Guide (MathWorks, Natick, Mass., 1996), pp. 2-34–2-38.

J. N. Reddy, An Introduction to the Finite Element Method (McGraw-Hill, New York, 1993).

Computer program labview Version 4.1, National Instruments, 6504 Bridge Point Pkwy, Austin, Tex. 78730-5039, 1997; ph. (512) 794–0100.

T. A. Darvann, “Foucault test atmospheric turbulence power spectra,” presented at the Workshop on Turbulence Power Spectral Density, Albuquerque, N.M., December 1989.

K. Strohbehn, B. Kluga, D. M. Rust, “Fast, wide-dynamic range, low-voltage tip/tilt mirror,” in Acquisition, Tracking, and Pointing VIII, M. K. Masten, L. A. Stockum, M. M. Birnbaum, G. E. Sevaston, eds., Proc. SPIE.2221, 414–417 (1994).

Th. Rimmele, O. von der Luthe, P. H. Wiborg, A. L. Widener, R. B. Dunn, G. Spence, “Solar feature correlation tracker,” in Active and Adaptive Optical Systems, M. A. Ealey, ed., Proc. SPIE.1542, 186–193 (1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Actuator–mirror configuration: (a) schematic and (b) photograph.

Fig. 2
Fig. 2

Lowest calculated bending mode (160 Hz) for the first actuator mount design without the front actuator brace.

Fig. 3
Fig. 3

Lowest calculated bending mode (550 Hz) for the second actuator mount design with the front actuator clamp.

Fig. 4
Fig. 4

Comparison of the experimentally obtained rotation amplitude versus driving frequency data showing resonant modes for the first and second actuator mount designs.

Fig. 5
Fig. 5

Phase shift versus driving frequency data for the second actuator mount design.

Metrics