Abstract

A solid two-beam Sagnac-type interferometer is described that is especially adapted for use with a microscope for Fourier excitation and emission fluorescence spectroscopy. Its advantages are its compactness and stability, and because it is an integral optical element, the need for eliminating vibration and for shielding from air currents is greatly reduced.

© 1999 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Weber, “Enumeration of components in complex systems by fluorescence spectrophotometry,” Nature (London) 190, 27–29 (1961).
    [CrossRef]
  2. P. Fellgett, “Spectromètre interférentiel multiplex pour measures infrarouges sur les étoiles,” J. Phys. Radium 19, 237–240 (1958).
    [CrossRef]
  3. R. Gemperlein, “A new method for the study of spectral characteristics in visual systems,” Doc. Opthamol. Proc. Ser. 33, 265–267 (1980).
  4. A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
    [CrossRef]
  5. J. G. Hirschberg, G. Vereb, C. K. Meyer, A. K. Kirsch, E. Kohen, T. M. Jovin, “Interferometric measurement of fluorescence excitation spectra,” Appl. Opt. 37, 1953–1957 (1998).
    [CrossRef]
  6. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings or Fabry–Perot étalons,” J. Opt. Soc. Am. 44, 761–765 (1954).
    [CrossRef]

1998 (1)

1986 (1)

A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
[CrossRef]

1980 (1)

R. Gemperlein, “A new method for the study of spectral characteristics in visual systems,” Doc. Opthamol. Proc. Ser. 33, 265–267 (1980).

1961 (1)

G. Weber, “Enumeration of components in complex systems by fluorescence spectrophotometry,” Nature (London) 190, 27–29 (1961).
[CrossRef]

1958 (1)

P. Fellgett, “Spectromètre interférentiel multiplex pour measures infrarouges sur les étoiles,” J. Phys. Radium 19, 237–240 (1958).
[CrossRef]

1954 (1)

Fellgett, P.

P. Fellgett, “Spectromètre interférentiel multiplex pour measures infrarouges sur les étoiles,” J. Phys. Radium 19, 237–240 (1958).
[CrossRef]

Gemperlein, R.

A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
[CrossRef]

R. Gemperlein, “A new method for the study of spectral characteristics in visual systems,” Doc. Opthamol. Proc. Ser. 33, 265–267 (1980).

Hirschberg, J. G.

Jacquinot, P.

Jovin, T. M.

Kirsch, A. K.

Kohen, E.

Meyer, C. K.

Paul, R.

A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
[CrossRef]

Steiner, A.

A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
[CrossRef]

Vereb, G.

Weber, G.

G. Weber, “Enumeration of components in complex systems by fluorescence spectrophotometry,” Nature (London) 190, 27–29 (1961).
[CrossRef]

Appl. Opt. (1)

Doc. Opthamol. Proc. Ser. (1)

R. Gemperlein, “A new method for the study of spectral characteristics in visual systems,” Doc. Opthamol. Proc. Ser. 33, 265–267 (1980).

J. Comp. Physiol. A (1)

A. Steiner, R. Paul, R. Gemperlein, “Retinal receptor types in Aglaais urticae and Pieris brassicae (Lepidoptera), revealed by the analysis of the electroretinogram obtained with Fourier interferometric stimulation (FIS),” J. Comp. Physiol. A 160, 247–258 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. Radium (1)

P. Fellgett, “Spectromètre interférentiel multiplex pour measures infrarouges sur les étoiles,” J. Phys. Radium 19, 237–240 (1958).
[CrossRef]

Nature (London) (1)

G. Weber, “Enumeration of components in complex systems by fluorescence spectrophotometry,” Nature (London) 190, 27–29 (1961).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Interferometer for which the long sides of the two prisms are provided with a beam-splitting coating over approximately half of their length and the opposite sides aluminized as shown. They are then cemented together with an offset that determines the angular separation of the fringes.

Fig. 2
Fig. 2

(a) Resulting fringes with white light and (b) the fringes with quasi-monochromatic light.

Fig. 3
Fig. 3

Proposed application with tissue-culture microscope. Light from a broad source falls on the excitation Pentaferometer at (a). The Pentaferometer is rotated at constant speed, sweeping the resulting interference fringes by a slit on which they are focused by a fused-silica lens. A fused-silica clear beam splitter diverts approximately 6% of the exciting light into the excitation photodetector, providing a reference spectrum. The rest of the exciting light falls on the specimen, which is on the stage of the microscope. The resulting fluorescence is passed to the emission Pentaferometer at (b). It is also rotated, but at a different speed, so that the two signals, representing the excitation and the emission spectra, can be separated by the computer.

Metrics