A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).

[CrossRef]

A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).

[CrossRef]

P. D. T. Huibers, “Models for the wavelength dependence of the index of refraction of water,” Appl. Opt. 36, 3785–3787 (1997).

[CrossRef]
[PubMed]

S. H. Clearwater, T. Hogg, “Problem structure heuristics and scaling behavior for genetic algorithm,” Artif. Intell. 81, 327–347 (1996).

[CrossRef]

R. R. Brooks, S. S. Iyengar, J. Chen, “Automatic correlation and calibration of noisy sensor readingsusing elite genetic algorithms,” Artif. Intell. 81, 329–354 (1996).

D. Raynolds, J. Gonatann, “Stochastic modelling of genetic algorithms,” Artif. Intell. 82, 303–330 (1996).

[CrossRef]

T. H. Han, W. W. Chang, “Estimation of the Gilbert model parameters using the simulated annealing method,” Electron. Lett. 32, 1256–1258 (1996).

[CrossRef]

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5914 (1996).

[CrossRef]

A. D. Rakić, J. M. Elazar, A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).

[CrossRef]

F. Curatelli, “Implementation and evaluation of genetic algorithms for system partitioning,” Int. J. Electron. 78, 435–437 (1995).

[CrossRef]

A. Chipperfield, R. Fleming, “Genetic algorithms in control system engineering,” Control Comput. 23, 88–94 (1995).

X. Quan, E. S. Fry, “Empirical equation for the index of refraction of seawater,” Appl. Opt. 34, 3477–3480 (1995).

[CrossRef]
[PubMed]

R. Vemuri, R. Vemuri, “Genetic algorithm for MCM partitioning,” Electron. Lett. 30, 1270–1272 (1994).

[CrossRef]

K. P. Wong, Y. W. Wong, “Genetic and genetic/simulated annealing approaches to economic dispatch,” IEE Proc. Gen. Transm. Distrib. 141, 507–513 (1994).

[CrossRef]

M. W. Gutowski, “Smooth genetic algorithm,” J. Phys. A Math. Gen. 27, 7893–7905 (1994).

[CrossRef]

H. Műhlenbein, D. Schlierkamp-Voosen, “Predictive models for the breeder genetic algorithm I. Continuous parameter optimization,” Evol. Comput. 1, 25–41 (1993).

[CrossRef]

A. Dekkers, E. Aarts, “Global optimization and simulated annealing,” Math. Programming, 50, 367–393 (1991).

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

F. Aluffi-Pentini, V. Parisi, F. Zirilli, “Global optimization and stochastic differential equations,” J. Optim. Theory Appl. 47, 1–16 (1985).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, pp. 671–680 (1983).

[CrossRef]

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).

[CrossRef]

W. Matthaus, “Empirische Gleichungen fúr den Brechungsindex des Meerwassers,” Beitr. Meereskd. 33, 73–78 (1974).

A. Dekkers, E. Aarts, “Global optimization and simulated annealing,” Math. Programming, 50, 367–393 (1991).

F. Aluffi-Pentini, V. Parisi, F. Zirilli, “Global optimization and stochastic differential equations,” J. Optim. Theory Appl. 47, 1–16 (1985).

[CrossRef]

T. Bäck, H.-P. Schwefel, “Evolution strategies I: variants and their computational application,” in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, P. Cuesta, eds. (Wiley, New York, 1995), pp. 111–126.

R. R. Brooks, S. S. Iyengar, J. Chen, “Automatic correlation and calibration of noisy sensor readingsusing elite genetic algorithms,” Artif. Intell. 81, 329–354 (1996).

T. H. Han, W. W. Chang, “Estimation of the Gilbert model parameters using the simulated annealing method,” Electron. Lett. 32, 1256–1258 (1996).

[CrossRef]

R. R. Brooks, S. S. Iyengar, J. Chen, “Automatic correlation and calibration of noisy sensor readingsusing elite genetic algorithms,” Artif. Intell. 81, 329–354 (1996).

A. Chipperfield, R. Fleming, “Genetic algorithms in control system engineering,” Control Comput. 23, 88–94 (1995).

S. H. Clearwater, T. Hogg, “Problem structure heuristics and scaling behavior for genetic algorithm,” Artif. Intell. 81, 327–347 (1996).

[CrossRef]

F. Curatelli, “Implementation and evaluation of genetic algorithms for system partitioning,” Int. J. Electron. 78, 435–437 (1995).

[CrossRef]

A. Dekkers, E. Aarts, “Global optimization and simulated annealing,” Math. Programming, 50, 367–393 (1991).

A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).

[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).

[CrossRef]

A. D. Rakić, J. M. Elazar, A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).

[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).

[CrossRef]

A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).

[CrossRef]

A. D. Rakić, J. M. Elazar, A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

A. Chipperfield, R. Fleming, “Genetic algorithms in control system engineering,” Control Comput. 23, 88–94 (1995).

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, pp. 671–680 (1983).

[CrossRef]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine learning (Addison-Wesley, Reading, Mass., 1989).

D. Raynolds, J. Gonatann, “Stochastic modelling of genetic algorithms,” Artif. Intell. 82, 303–330 (1996).

[CrossRef]

M. W. Gutowski, “Smooth genetic algorithm,” J. Phys. A Math. Gen. 27, 7893–7905 (1994).

[CrossRef]

T. H. Han, W. W. Chang, “Estimation of the Gilbert model parameters using the simulated annealing method,” Electron. Lett. 32, 1256–1258 (1996).

[CrossRef]

S. H. Clearwater, T. Hogg, “Problem structure heuristics and scaling behavior for genetic algorithm,” Artif. Intell. 81, 327–347 (1996).

[CrossRef]

R. R. Brooks, S. S. Iyengar, J. Chen, “Automatic correlation and calibration of noisy sensor readingsusing elite genetic algorithms,” Artif. Intell. 81, 329–354 (1996).

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, pp. 671–680 (1983).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5914 (1996).

[CrossRef]

W. Matthaus, “Empirische Gleichungen fúr den Brechungsindex des Meerwassers,” Beitr. Meereskd. 33, 73–78 (1974).

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).

[CrossRef]

H. Műhlenbein, D. Schlierkamp-Voosen, “Predictive models for the breeder genetic algorithm I. Continuous parameter optimization,” Evol. Comput. 1, 25–41 (1993).

[CrossRef]

F. Aluffi-Pentini, V. Parisi, F. Zirilli, “Global optimization and stochastic differential equations,” J. Optim. Theory Appl. 47, 1–16 (1985).

[CrossRef]

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).

[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).

[CrossRef]

A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5914 (1996).

[CrossRef]

A. D. Rakić, J. M. Elazar, A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).

[CrossRef]

D. Raynolds, J. Gonatann, “Stochastic modelling of genetic algorithms,” Artif. Intell. 82, 303–330 (1996).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

H. Műhlenbein, D. Schlierkamp-Voosen, “Predictive models for the breeder genetic algorithm I. Continuous parameter optimization,” Evol. Comput. 1, 25–41 (1993).

[CrossRef]

T. Bäck, H.-P. Schwefel, “Evolution strategies I: variants and their computational application,” in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, P. Cuesta, eds. (Wiley, New York, 1995), pp. 111–126.

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, pp. 671–680 (1983).

[CrossRef]

R. Vemuri, R. Vemuri, “Genetic algorithm for MCM partitioning,” Electron. Lett. 30, 1270–1272 (1994).

[CrossRef]

R. Vemuri, R. Vemuri, “Genetic algorithm for MCM partitioning,” Electron. Lett. 30, 1270–1272 (1994).

[CrossRef]

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

K. P. Wong, Y. W. Wong, “Genetic and genetic/simulated annealing approaches to economic dispatch,” IEE Proc. Gen. Transm. Distrib. 141, 507–513 (1994).

[CrossRef]

K. P. Wong, Y. W. Wong, “Floating-point number coding method for genetic algorithms,” in Proceedings of IEEE Australian and New Zealand Conference on Intelligent Information Systems 93 (University of Perth, Western Australia, 1993), pp. 512–516.

K. P. Wong, Y. W. Wong, “Genetic and genetic/simulated annealing approaches to economic dispatch,” IEE Proc. Gen. Transm. Distrib. 141, 507–513 (1994).

[CrossRef]

K. P. Wong, Y. W. Wong, “Floating-point number coding method for genetic algorithms,” in Proceedings of IEEE Australian and New Zealand Conference on Intelligent Information Systems 93 (University of Perth, Western Australia, 1993), pp. 512–516.

F. Aluffi-Pentini, V. Parisi, F. Zirilli, “Global optimization and stochastic differential equations,” J. Optim. Theory Appl. 47, 1–16 (1985).

[CrossRef]

D. Raynolds, J. Gonatann, “Stochastic modelling of genetic algorithms,” Artif. Intell. 82, 303–330 (1996).

[CrossRef]

S. H. Clearwater, T. Hogg, “Problem structure heuristics and scaling behavior for genetic algorithm,” Artif. Intell. 81, 327–347 (1996).

[CrossRef]

R. R. Brooks, S. S. Iyengar, J. Chen, “Automatic correlation and calibration of noisy sensor readingsusing elite genetic algorithms,” Artif. Intell. 81, 329–354 (1996).

W. Matthaus, “Empirische Gleichungen fúr den Brechungsindex des Meerwassers,” Beitr. Meereskd. 33, 73–78 (1974).

A. Chipperfield, R. Fleming, “Genetic algorithms in control system engineering,” Control Comput. 23, 88–94 (1995).

R. Vemuri, R. Vemuri, “Genetic algorithm for MCM partitioning,” Electron. Lett. 30, 1270–1272 (1994).

[CrossRef]

T. H. Han, W. W. Chang, “Estimation of the Gilbert model parameters using the simulated annealing method,” Electron. Lett. 32, 1256–1258 (1996).

[CrossRef]

H. Műhlenbein, D. Schlierkamp-Voosen, “Predictive models for the breeder genetic algorithm I. Continuous parameter optimization,” Evol. Comput. 1, 25–41 (1993).

[CrossRef]

K. P. Wong, Y. W. Wong, “Genetic and genetic/simulated annealing approaches to economic dispatch,” IEE Proc. Gen. Transm. Distrib. 141, 507–513 (1994).

[CrossRef]

M. K. Vai, S. Prasad, N. C. Li, F. Kai, “Modeling the microwave devices using simulated annealing optimization,” IEEE Trans. Electron. Devices 36, 761–762 (1989).

[CrossRef]

F. Curatelli, “Implementation and evaluation of genetic algorithms for system partitioning,” Int. J. Electron. 78, 435–437 (1995).

[CrossRef]

A. D. Rakić, M. L. Majewski, “Modeling the optical dielectric function of GaAs and AlAs: Extension of Adachi’s model,” J. Appl. Phys. 80, 5909–5914 (1996).

[CrossRef]

F. Aluffi-Pentini, V. Parisi, F. Zirilli, “Global optimization and stochastic differential equations,” J. Optim. Theory Appl. 47, 1–16 (1985).

[CrossRef]

M. W. Gutowski, “Smooth genetic algorithm,” J. Phys. A Math. Gen. 27, 7893–7905 (1994).

[CrossRef]

P. Schiebener, J. Straub, J. M. H. Levelt, S. Engers, J. S. Gallagher, “Refractive index of water and steam as a function of wavelength, temperature and density,” J. Phys. Chem. Ref. Data 19, 677–717 (1990).

[CrossRef]

A. Dekkers, E. Aarts, “Global optimization and simulated annealing,” Math. Programming, 50, 367–393 (1991).

A. B. Djurišić, J. M. Elazar, A. D. Rakić, “Modeling the optical constants of solids using genetic algorithms with parameter space size adjustment,” Opt. Commun. 134, 407–414 (1997).

[CrossRef]

G. T. McNeil, “Metrical fundamentals of underwater lens system,” Opt. Eng. 16, 128–139 (1977).

[CrossRef]

A. B. Djurišić, A. D. Rakić, J. M. Elazar, “Modeling the optical constants of solids using acceptance-probability-controlled simulated annealing with adaptive move generation procedure,” Phys. Rev. E 55, 4797–4803 (1997).

[CrossRef]

A. D. Rakić, J. M. Elazar, A. B. Djurišić, “Acceptance-probability-controlled simulated annealing: a method for modeling the optical constants of solids,” Phys. Rev. E 52, 6862–6867 (1995).

[CrossRef]

A. Franke, A. Stendal, O. Stenzel, C. von Borczyskowski, “Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines,” Pure Appl. Opt. 5, 845–853 (1996).

[CrossRef]

S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, “Optimization by simulated annealing,” Science 220, pp. 671–680 (1983).

[CrossRef]

D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine learning (Addison-Wesley, Reading, Mass., 1989).

K. P. Wong, Y. W. Wong, “Floating-point number coding method for genetic algorithms,” in Proceedings of IEEE Australian and New Zealand Conference on Intelligent Information Systems 93 (University of Perth, Western Australia, 1993), pp. 512–516.

T. Bäck, H.-P. Schwefel, “Evolution strategies I: variants and their computational application,” in Genetic Algorithms in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan, P. Cuesta, eds. (Wiley, New York, 1995), pp. 111–126.

“Optical Constants,” in Group III: Condensed Matter, Vol. 38A of Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, New Series, K.-H. Hellwege, O. Madelung, eds. (Springer-VerlagBerlin, 1996), pp. 17–22.