Abstract

A paraboliclike quantum well structure can be used to produce polarization-insensitive waveguide type modulators. We propose the use of interdiffusion of AlGaAs/GaAs quantum wells to achieve the parabolic well shape. Criteria to achieve the paraboliclike quantum wells by interdiffusion are discussed. The theoretical results indicate that interdiffused quantum wells can produce equal eigenstate spacing, polarization insensitive Stark shifts, and modulation similar to an ideal parabolic quantum well. Three procedures are also proposed to develop polarization-insensitive on and off states in paraboliclike interdiffused quantum wells. The modulation depth is compatible with that of the measured parabolic quantum wells. For diffused quantum wells one can take advantage of using an as-grown rectangular quantum well with postgrowth thermal processing. These features demonstrate that an interdiffused quantum well structure can be used to produce a polarization-insensitive electroabsorptive modulator.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
    [CrossRef]
  2. R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
    [CrossRef]
  3. T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
    [CrossRef]
  4. J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
    [CrossRef]
  5. E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
    [CrossRef]
  6. W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
    [CrossRef]
  7. B. L. Weiss, ed., “Special issue on quantum well mixing for optoelectronics,” Opt. Quantum Electron. 23 (1991); E. H. Li, ed., Semiconductor Quantum Well Intermixing (Gordon & Breach, Amsterdam, 1998).
  8. W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997).
    [CrossRef]
  9. M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
    [CrossRef]
  10. P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
    [CrossRef]
  11. J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
    [CrossRef]
  12. S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
    [CrossRef]
  13. P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
    [CrossRef]
  14. C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).
  15. E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).
  16. W. C. H. Choy, “Optical modulation properties of interdiffused III–V semiconductor quantum wells,” MP thesis (University of Hong Kong, Hong Kong, 1996).
  17. K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
    [CrossRef]
  18. S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989).
    [CrossRef]
  19. S. Adachi, “GaAs, AlAs, and AlxGa1–xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
    [CrossRef]
  20. D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
    [CrossRef]
  21. Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994).
    [CrossRef]
  22. J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
    [CrossRef]
  23. T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
    [CrossRef] [PubMed]
  24. E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997).
    [CrossRef]
  25. W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
    [CrossRef]
  26. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
    [CrossRef]
  27. B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
    [CrossRef]

1997 (5)

W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
[CrossRef]

W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997).
[CrossRef]

C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).

E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997).
[CrossRef]

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

1996 (2)

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

1995 (2)

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
[CrossRef]

1994 (2)

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994).
[CrossRef]

1992 (3)

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).

1991 (3)

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

B. L. Weiss, ed., “Special issue on quantum well mixing for optoelectronics,” Opt. Quantum Electron. 23 (1991); E. H. Li, ed., Semiconductor Quantum Well Intermixing (Gordon & Breach, Amsterdam, 1998).

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

1990 (1)

T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
[CrossRef]

1989 (1)

S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989).
[CrossRef]

1988 (3)

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

1986 (1)

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

1985 (1)

S. Adachi, “GaAs, AlAs, and AlxGa1–xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

1984 (1)

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

Adachi, S.

S. Adachi, “GaAs, AlAs, and AlxGa1–xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

Aers, G. C.

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Ahn, D.

S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989).
[CrossRef]

Aizawa, T.

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

Andrew, S. R.

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

Apsnes, D. E.

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Bhat, R.

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Boykin, T. B.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Buchanan, M.

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

Chan, K. S.

E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).

Chang, T. Y.

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

Charbonneau, S.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Choy, W. C. H.

W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997).
[CrossRef]

E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997).
[CrossRef]

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
[CrossRef]

W. C. H. Choy, “Optical modulation properties of interdiffused III–V semiconductor quantum wells,” MP thesis (University of Hong Kong, Hong Kong, 1996).

Chuang, S. L.

S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989).
[CrossRef]

Cuningham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Dion, M.

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

Divino, H. D.

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

Dobisz, E. A.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Feng, Y.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Ghisoni, M.

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

Goldberg, R. D.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Gossard, A. C.

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

Grabbe, P.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Graighead, H. G.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Harris, J. S.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Hayakawa, T.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

He, J. J.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Hijikata, T.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Hill, G.

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

Holland, M. C.

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

Hong, S.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Huang, Y.

Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994).
[CrossRef]

Hughes, P.

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

Hughes, P. J.

P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
[CrossRef]

Ishikawa, T.

T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
[CrossRef]

Jan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Kash, K.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Kean, A. H.

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

Kelso, S. M.

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Kleinman, D. A.

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

Kondo, M.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Koteles, E. S.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Lastufka, C.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Li, E. H.

W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997).
[CrossRef]

W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
[CrossRef]

E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997).
[CrossRef]

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
[CrossRef]

E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).

Lien, C.

Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994).
[CrossRef]

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Logan, R. A.

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Lord, S. M.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

March, J. A.

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

Mhatacharya, P. K.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Micallef, J.

W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
[CrossRef]

Miller, D. A. B.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Miller, R. C.

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

Mitchell, I. V.

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Munteamu, O.

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

Nagasawa, Y.

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

Nishimura, S.

T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
[CrossRef]

Parry, G.

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

Pate, M.

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

Pezeshki, B.

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

Poole, P. J.

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

Ravikumar, K. G.

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

Roberts, J.

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

Sahai, R.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Sauer, N. J.

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

Singh, J.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Sobel, H. R.

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

Suyama, T.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Tada, K.

T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
[CrossRef]

Takahashi, K.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Tamargo, C. M.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Tell, B.

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

Thomspon, C.

C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).

Watanabe, T.

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

Weiss, B. L.

C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
[CrossRef]

E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).

Yamamoto, S.

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Zucker, J. E.

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

Appl. Phys. Lett. (2)

J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, E. S. Koteles, R. D. Goldberg, I. V. Mitchell, “Polarization insensitive InGaAs/InGaAsP/InP amplifier using quantum well intermixing,” Appl. Phys. Lett. 69, 562–564 (1996).
[CrossRef]

B. Pezeshki, S. M. Lord, T. B. Boykin, J. S. Harris, “GaAs/AlAs quantum wells for electro-absorption modulators,” Appl. Phys. Lett. 60, 2779–2781 (1992).
[CrossRef]

IEEE J. Quantum Electron. (4)

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cuningham, W. Y. Jan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

C. Thomspon, B. L. Weiss, “The effects of surface acoustic waves on the optical properties of AlGaAs/GaAs quantum well structures,” IEEE J. Quantum Electron. 33, 1601–1607 (1997).

W. C. H. Choy, E. H. Li, J. Micallef, “The polarization insensitive electroabsorptive and refractive modulation by utilizing InGaAsP/InP interdiffused quantum well,” IEEE J. Quantum Electron. 33, 1316–1322 (1997).
[CrossRef]

W. C. H. Choy, E. H. Li, “The applications of interdiffused quantum well in normally-on electroabsorptive Fabry–Perot reflection modulator,” IEEE J. Quantum Electron. 33, 382–393 (1997).
[CrossRef]

IEEE Photon. Technol. (1)

T. Aizawa, Y. Nagasawa, K. G. Ravikumar, T. Watanabe, “Polarization-independent switching operation in directional coupler using tensile-strained multiquantum well,” IEEE Photon. Technol. 7, 47–49 (1995).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

P. J. Poole, S. Charbonneau, M. Dion, G. C. Aers, M. Buchanan, R. D. Goldberg, I. V. Mitchell, “Demonstration of an ion-implanted wavelength-shifted quantum-well laser,” IEEE Photon. Technol. Lett. 8, 16–21 (1996).
[CrossRef]

J. E. Zucker, H. D. Divino, T. Y. Chang, N. J. Sauer, “Less reduction in InGaAs/InGaAlAs quantum well electron transfer waveguides using ion implantation,” IEEE Photon. Technol. Lett. 6, 1105–1108 (1994).
[CrossRef]

S. R. Andrew, J. A. March, M. C. Holland, A. H. Kean, “Quantum-well laser with integrated passive waveguides fabricated by neutral impurity disordering,” IEEE Photon. Technol. Lett. 4, 426–428 (1992).
[CrossRef]

J. Appl. Phys. (6)

K. Kash, B. Tell, P. Grabbe, E. A. Dobisz, H. G. Graighead, C. M. Tamargo, “Aluminum ion-implantation enhanced intermixing of GaAs-AlGaAs quantum-well structures,” J. Appl. Phys. 63, 90–194 (1988).
[CrossRef]

S. L. Chuang, D. Ahn, “Optical transitions in a parabolic quantum well with an applied electric field: analytical solution,” J. Appl. Phys. 65, 2822–2826 (1989).
[CrossRef]

S. Adachi, “GaAs, AlAs, and AlxGa1–xAs: material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985).
[CrossRef]

D. E. Apsnes, S. M. Kelso, R. A. Logan, R. Bhat, “Optical properties of AlxGa1–xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Y. Huang, C. Lien, “The enhancement of optical third harmonic susceptibility in parabolic quantum well by triple resonance,” J. Appl. Phys. 75, 3223–3225 (1994).
[CrossRef]

E. H. Li, W. C. H. Choy, “Electroabsorptive properties of interdiffused quantum wells,” J. Appl. Phys. 82, 3861–3869 (1997).
[CrossRef]

J. Lightwave Technol. (1)

J. Singh, S. Hong, P. K. Mhatacharya, R. Sahai, C. Lastufka, H. R. Sobel, “System requirements and feasibility studies for optical modulators based on GaAs/AlGaAs multiquantum well structures for optical processing,” J. Lightwave Technol. 6, 818–831 (1988).
[CrossRef]

J. Vac. Sci. Technol. B (1)

P. J. Hughes, E. H. Li, B. L. Weiss, “Thermal stability of AlGaAs/GaAs single quantum well structures using photoreflectance,” J. Vac. Sci. Technol. B 13, 2276–2283 (1995).
[CrossRef]

Jpn. J. Appl. Phys. (2)

M. Ghisoni, G. Parry, M. Pate, G. Hill, J. Roberts, “Post growth fabrication of GaAs/AlGaAs reflection modulators via impurity free disordering,” Jpn. J. Appl. Phys. 30, L1018–L1020 (1991).
[CrossRef]

T. Ishikawa, S. Nishimura, K. Tada, “Quantum-confined Stark effect in a parabolic-potential quantum well,” Jpn. J. Appl. Phys. 29, 1466–1473 (1990).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

W. C. H. Choy, P. Hughes, B. L. Weiss, E. H. Li, “The confinement profile of as-grown MOVPE AlGaAs/GaAs quantum well structures,” Mater. Res. Soc. Symp. Proc. 450, 425–430 (1997).
[CrossRef]

Opt. Quantum Electron. (1)

B. L. Weiss, ed., “Special issue on quantum well mixing for optoelectronics,” Opt. Quantum Electron. 23 (1991); E. H. Li, ed., Semiconductor Quantum Well Intermixing (Gordon & Breach, Amsterdam, 1998).

Phys. Rev. B (2)

R. C. Miller, A. C. Gossard, D. A. Kleinman, O. Munteamu, “Parabolic quantum wells with the GaAs-AlxGa1–xAs system,” Phys. Rev. B 29, 3740–3743 (1984).
[CrossRef]

E. H. Li, B. L. Weiss, K. S. Chan, “Effect of interdiffusion on the subbands in an AlxGa1–xAs/GaAs single-quantum-well structure,” Phys. Rev. B 46, 15,180–15,192 (1992).

Phys. Rev. Lett. (1)

T. Hayakawa, K. Takahashi, M. Kondo, T. Suyama, S. Yamamoto, T. Hijikata, “Enhancement in optical transitions in (111)-oriented GaAs-AlGaAs quantum well structures,” Phys. Rev. Lett. 60, 349–352 (1988).
[CrossRef] [PubMed]

Other (2)

E. S. Koteles, J. J. He, S. Charbonneau, P. J. Poole, G. C. Aers, Y. Feng, R. D. Goldberg, I. V. Mitchell, “Polarization-insensitive quantum well optoelectronic devices using quantum well shape modification,” in Emerging Components and Technologies for All-Optical Photonic, E. S. Koteles, A. E. Willner, eds., Proc. SPIE2918, 184–192 (1996).
[CrossRef]

W. C. H. Choy, “Optical modulation properties of interdiffused III–V semiconductor quantum wells,” MP thesis (University of Hong Kong, Hong Kong, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Potential profile of the parabolic DFQW (solid curve) with x = 0.32, L z = 14 nm, L d = 2.0 nm, and its corresponding as-grown QW (dash–dot curve) with L d = 0 and the PQW (dashed curve) x = 0.3, L = 20 nm.

Fig. 2
Fig. 2

Mean deviation of energy difference of the adjacent bound state (ΔE ij ) of the HH (solid curve) and electron (dashed curve) and the difference between the QCSS of the HH and the LH transition (dotted curve) of an DFQW (low-Al).

Fig. 3
Fig. 3

Potential profile of the parabolic DFQW (solid curve) with x = 0.37, L z = 17 nm, L d = 2.2 nm and the PQW (dashed curve) of x = 0.4, L = 22 nm. Eigenstates are also indicated.

Fig. 4
Fig. 4

C1-HH1 and C1-LH1 transition energies of experimental data3 (solid curves), QW (hi-Al) x = 0.37, L z = 17 nm, L d = 2.2 nm (dotted curves), and QW (low-Al) x = 0.32, L z = 14 nm, L d = 2 nm (dashed curves).

Fig. 5
Fig. 5

Absorption spectra of the TE and TM polarization modes of the DFQW with low aluminum concentration, x = 0.32 (low-Al).

Fig. 6
Fig. 6

Absorption spectra of the TE and TM polarization modes of the DFQW with middle aluminum concentration, x = 0.35 (mid-Al).

Fig. 7
Fig. 7

Absorption spectra of the TE and TM polarization modes of the DFQW with high aluminum concentration, x = 0.37 (hi-Al).

Fig. 8
Fig. 8

Electroabsorption spectra of the TE and TM polarization modes of the DFQW with low aluminum concentration, x = 0.32 (low-Al).

Tables (2)

Tables Icon

Table 1 Energy Difference between Adjacent Bound States i and j, ΔEij, in the Conduction Band and HH Valence Band of an DFQW with Aluminum Content of x = 0.32 and Lz = 14 nm

Tables Icon

Table 2 Modulation Properties of Three Paraboliclike DFQW Polarization-Insensitive Modulators

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

α bound ω = e 2 μ * ω 6 e 0 c 0 n r m e * E CV 2 L z   M 0 C , V   | χ C | χ V | 2 I CV η ω ,
M 0 = E g E g + Δ 0 E g + 2 3 Δ 0 , I CV η ω = 0 E S E L E d E , L E = Γ B π E CV + E - η ω 2 + Γ B 2 ,
α exc ω = A ω c 0 n r   | χ ρ = 0 | 2 Γ XB π E exc - η ω 2 + Γ XB 2 ,
A = e 2 η 2 2 ε 0 m e * E CV 2 L z   M 0 | χ C 1 | χ V 1 | 2 ,
Δ α = α F 0 - α F = 0 ,
CR dB = 10   log exp - α on l exp - α off l ,
U r z = V PQW ,

Metrics