Abstract

We propose a novel configuration of efficient type I second-harmonic generation (SHG) with ultrashort laser pulses by group-velocity compensation. The configuration is composed of a type I SHG crystal and a series of alternating time-delay and type I SHG crystals. The numerical calculations show that the conversion efficiency can be increased to almost 100% by using crystal pairs in series, and the duration of the second-harmonic pulse is almost the same as that of the fundamental pulse.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
    [CrossRef]
  2. T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
    [CrossRef]
  3. Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5945–5649 (1990).
    [CrossRef]
  4. J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  5. T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
    [CrossRef]
  6. Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
    [CrossRef]

1996 (1)

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

1995 (2)

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

1990 (1)

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5945–5649 (1990).
[CrossRef]

1988 (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Armstrong, J. A.

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bado, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Blombergen, N.

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Daido, H.

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

Dragila, R.

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5945–5649 (1990).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Izawa, Y.

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

Kato, Y.

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

Kuroda, I.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Mori, Y.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Mourou, G.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Nakai, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Nakajima, S.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Persham, P. S.

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Pessot, M.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Sasaki, T.

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Wang, Y.

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5945–5649 (1990).
[CrossRef]

Yamakawa, K.

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

Zhang, T.

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. 24, 398–403 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (2)

T. Zhang, Y. Kato, K. Yamakawa, H. Daido, Y. Izawa, “Peak intensity enhancement and pulse compression of a picosecond laser pulse by frequency doubling with a predelay,” Jpn. J. Appl. Phys. 34, 3552–3561 (1995).
[CrossRef]

Y. Mori, I. Kuroda, S. Nakajima, T. Sasaki, S. Nakai, “Nonlinear optical properties of cesium lithium borate,” Jpn. J. Appl. Phys. 34, L296–L297 (1995).
[CrossRef]

Opt. Commun. (1)

T. Zhang, Y. Kato, H. Daido, Y. Izawa, “Oscillating nonlinear frequency chirp in a single mode optical fiber,” Opt. Commun. 123, 161–168 (1996).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Blombergen, J. Ducuing, P. S. Persham, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (1)

Y. Wang, R. Dragila, “Efficient conversion of picosecond laser pulses into second-harmonic frequency using group-velocity dispersion,” Phys. Rev. A 41, 5945–5649 (1990).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Proposed type I SHG scheme with a time-delay crystal.

Fig. 2
Fig. 2

Calculated conversion efficiency and SH pulse duration for a type I CLBO crystal as a function of crystal thickness at fundamental input intensities of (I) 1 GW/cm2, (II) 5 GW/cm2, (III) 10 GW/cm2, and (IV) 50 GW/cm2. (a) Conversion efficiency, (b) SH pulse duration. For the calculations, the phase-matching condition Δk = 0 was assumed.

Fig. 3
Fig. 3

Shapes of the fundamental and SH pulses for a 0.5-cm-thick crystal at fundamental intensities of (I) 1 GW/cm2, (II) 5 GW/cm2, (III) 10 GW/cm2, and (IV) 50 GW/cm2.

Fig. 4
Fig. 4

Calculated conversion efficiency and pulse duration of two type I SHG CLBO crystals with time delay as a function of the fundamental input intensity. The thickness of the first and second type I SHG crystals is 0.9 mm. Curves I, II, III, IV, and V represent phase-mismatching angles of 0, 100, 500, 1000, and 2000 μrad, respectively.

Fig. 5
Fig. 5

Dependence of the conversion efficiency and SH pulse duration on number of crystal pairs at fundamental intensities of (I) 1 GW/cm2, (II) 5 GW/cm2, (III) 10 GW/cm2, and (IV) 50 GW/cm2. The thickness of the type I SHG CLBO crystal in each crystal pair is 0.9 mm, which is equal to the nonlinear interaction length. The thickness of each time-delay CLBO crystal is 4.33 mm. The phase-matching condition Δk = 0 was used in the calculation.

Fig. 6
Fig. 6

SH pulse shape for a 5-GW/cm2 fundamental intensity. The thicknesses of the type I SHG and time-delay CLBO crystals in each crystal pair are 0.9 and 4.33 mm, respectively. We used ten crystal pairs and the phase-matching condition Δk = 0.

Fig. 7
Fig. 7

Wavelength dependence of the thickness of the time-delay CLBO crystal at a 0.1-ps fundamental pulse duration.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A 1 / z + 1 / v 1 A 1 / t - ig 1 / 2 2 A 1 / t 2 = iK 1 A 2 A 1 *   exp - i Δ kz - α 1 A 1 , A 2 / z + 1 / v 2 A 2 / t - ig 2 / 2 2 A 2 / t 2 = - iK 2 A 1 2 exp i Δ kz - α 2 A 2 ,
K 1 = ω / c n 1 2 n 2 θ m - 1 / 2 d eff ;   K 2 = K 1 ,

Metrics