Abstract

Mid-infrared radiation in the 5–18-μm range has been obtained by difference frequency generation in a AgGaSe2 crystal by pumping with the output of a type I LiNbO3 optical parametric oscillator (OPO). Here we suggest the use of a LiTaO3 retarder to achieve an orthogonal state of polarization between OPO outputs that are necessary for efficient pumping of a AgGaSe2 crystal. Several tens of kilowatts of peak power near 8 μm and continuously tunable operation in the above range have been obtained.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
    [CrossRef]
  2. G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
    [CrossRef]
  3. H. Kildal, J. C. Mikkelsen, “The nonlinear coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
    [CrossRef]
  4. R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
    [CrossRef]
  5. R. Utano, M. J. Ferry, “8-12 μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.
  6. A. Bianchi, M. Garbi, “Down-conversion in the 4-18 μm range with GaSe and AgGaSe2 nonlinear crystals,” Opt. Commun. 30, 122–124 (1979).
    [CrossRef]
  7. R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
    [CrossRef]
  8. J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.
  9. C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.
  10. K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561–6563 (1996).
    [CrossRef]
  11. B. C. Ziegler, K. L. Schepler, “Transmission and damage-threshold measurement in AgGaSe2 at 2.1 μm,” Appl. Opt. 30, 5077–5080 (1991).
    [CrossRef] [PubMed]
  12. G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
    [PubMed]
  13. H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
    [CrossRef]
  14. D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2,” Appl. Opt. 35, 4677–4688 (1996).
    [CrossRef] [PubMed]
  15. N. P. Barnes, D. J. Gettemy, J. R. Hietanen, R. A. Ianini, “Parametric amplification in AgGaSe2,” Appl. Opt. 28, 5162–5168 (1989).
    [CrossRef] [PubMed]

1997 (1)

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

1996 (2)

K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561–6563 (1996).
[CrossRef]

D. A. Roberts, “Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2, and AgGaS2,” Appl. Opt. 35, 4677–4688 (1996).
[CrossRef] [PubMed]

1995 (1)

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

1993 (1)

1991 (1)

1989 (1)

1986 (1)

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

1979 (1)

A. Bianchi, M. Garbi, “Down-conversion in the 4-18 μm range with GaSe and AgGaSe2 nonlinear crystals,” Opt. Commun. 30, 122–124 (1979).
[CrossRef]

1974 (1)

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

1973 (1)

H. Kildal, J. C. Mikkelsen, “The nonlinear coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

1972 (1)

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Abedin, K. S.

K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561–6563 (1996).
[CrossRef]

Barnes, N. P.

Beigang, R.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

Bianchi, A.

A. Bianchi, M. Garbi, “Down-conversion in the 4-18 μm range with GaSe and AgGaSe2 nonlinear crystals,” Opt. Commun. 30, 122–124 (1979).
[CrossRef]

Boyd, G. D.

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Byer, R. L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Catella, G. C.

Chemla, D. S.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Choy, M. M.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Cooper, D. G.

Debuisschert, T.

J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.

Dorring, J.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

Eckardt, R. C.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Esterowitz, L.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Fan, Y. X.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Feigelson, R. S.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Ferry, M. J.

R. Utano, M. J. Ferry, “8-12 μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Fujimoto, J. M.

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Garbi, M.

A. Bianchi, M. Garbi, “Down-conversion in the 4-18 μm range with GaSe and AgGaSe2 nonlinear crystals,” Opt. Commun. 30, 122–124 (1979).
[CrossRef]

Gettemy, D. J.

Grasser, C.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

Harasaki, A.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Herbst, R. L.

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

Hietanen, J. R.

Ianini, R. A.

Ito, H.

K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561–6563 (1996).
[CrossRef]

Kasper, H.

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Kato, K.

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Kildal, H.

H. Kildal, J. C. Mikkelsen, “The nonlinear coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Komine, H.

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Long, W. H.

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Marquardt, C. L.

G. C. Catella, L. R. Shiozawa, J. R. Hietanen, R. C. Eckardt, R. K. Route, R. S. Feigelson, D. G. Cooper, C. L. Marquardt, “Mid-IR absorption in AgGaSe2 optical parametric oscillator crystals,” Appl. Opt. 32, 3948–3951 (1993).
[PubMed]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Marzenell, S.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

McFee, J. H.

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Mikkelsen, J. C.

H. Kildal, J. C. Mikkelsen, “The nonlinear coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Papuchon, M.

J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.

Pocholle, J.-P.

J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.

Raffy, J.

J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.

Roberts, D. A.

Route, R. K.

Schepler, K. L.

Shiozawa, L. R.

Stappaerts, E. A.

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

Storm, M. E.

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

Storz, F. G.

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

Utano, R.

R. Utano, M. J. Ferry, “8-12 μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

Wallenstein, R.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

Ziegler, B. C.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

R. L. Byer, M. M. Choy, R. L. Herbst, D. S. Chemla, R. S. Feigelson, “Second harmonic generation and infrared mixing in AgGaSe2,” Appl. Phys. Lett. 24, 65–68 (1974).
[CrossRef]

R. C. Eckardt, Y. X. Fan, R. L. Byer, C. L. Marquardt, M. E. Storm, L. Esterowitz, “Broadly tunable infrared parametric oscillation using AgGaSe2,” Appl. Phys. Lett. 49, 608–610 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. D. Boyd, H. Kasper, J. H. McFee, F. G. Storz, “Linear and nonlinear optical properties of some ternary selenides,” IEEE J. Quantum Electron. QE-8, 900–908 (1972).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Komine, J. M. Fujimoto, W. H. Long, E. A. Stappaerts, “Noncritically phase matched mid-infrared generation in AgGaSe2,” IEEE J. Sel. Top. Quantum Electron. 1, 44–49 (1995).
[CrossRef]

J. Appl. Phys. (1)

K. S. Abedin, H. Ito, “Temperature-dependent dispersion relation of ferroelectric lithium tantalate,” J. Appl. Phys. 80, 6561–6563 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

A. Harasaki, K. Kato, “New data on the nonlinear optical constant, phase-matching, and optical damage of AgGaS2,” Jpn. J. Appl. Phys. 36, 700–703 (1997).
[CrossRef]

Opt. Commun. (2)

A. Bianchi, M. Garbi, “Down-conversion in the 4-18 μm range with GaSe and AgGaSe2 nonlinear crystals,” Opt. Commun. 30, 122–124 (1979).
[CrossRef]

H. Kildal, J. C. Mikkelsen, “The nonlinear coefficient, phasematching and optical damage in the chalcopyrite AgGaSe2,” Opt. Commun. 9, 315–318 (1973).
[CrossRef]

Other (3)

R. Utano, M. J. Ferry, “8-12 μm generation using difference frequency generation in AgGaSe2 of a Nd:YAG pumped KTP OPO,” in Advanced Solid State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 82–84.

J. Raffy, T. Debuisschert, J.-P. Pocholle, M. Papuchon, “AgGaSe2 OPO pumped by a LiNbO3 OPO,” in Advanced Solid State Lasers, A. A. Pinto, T. Y. Fan, eds., Vol. 15 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1993), pp. 127–130.

C. Grasser, S. Marzenell, J. Dorring, R. Beigang, R. Wallenstein, “Continuous wave mode-locked operation of a picosecond AgGaSe2 optical parametric oscillator in the mid infrared,” in Advanced Solid State Lasers, S. A. Payne, C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), pp. 158–163.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup for DFG in AgGaSe2 by pumping with a LiNbO3 type I OPO (eo + o). A LiTaO3 retarder of 854-μm thickness can be used to achieve an orthogonal state of polarization between the signal and the idler.

Fig. 2
Fig. 2

Experimental angle tuning curve for DFG in AgGaSe2 as well as two calculated curves that were obtained with Sellmeier equations of Kato and Roberts. The DFG experimental results of Bianchi and Garbi6 are superimposed on the plot for comparison. The λ p pump wavelength of the LiNbO3 OPO is 1.064 μm.

Fig. 3
Fig. 3

Spectrum of the difference frequency output measured with a monochromator. The crystal angle was kept constant at 48.6 deg.

Fig. 4
Fig. 4

Relative efficiency of the DFG versus crystal (internal) angle with fixed signal and idler waves.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

1 / λ p = 1 / λ s + 1 / λ i ,
1 / λ s - 1 / λ i = 1 / λ DFG .
1 / λ p + 1 / λ DFG = 2 / λ s .
n e - n o L = λ s 2   2 q ,
n e - n o L = λ i 2 2 p + 1 ,
2 q λ s = 2 p + 1 λ i ,
q = 0.653 2 p + 1 .

Metrics