Abstract

Results of a detailed experimental study aimed at reducing the thermal loading effects in room-temperature continuous-wave Cr4+:forsterite lasers are presented. By using a Nd:YAG pump laser operated at 1.06 μm, the effect of the absorption coefficient and crystal cross-sectional area on the power performance of three crystals was compared between 12 and 36 °C. Experiments indicated that a low differential absorption coefficient significantly reduces the pump-induced thermal effects and cavity losses that would otherwise give rise to inefficient operation and increased temperature sensitivity. In particular, a Cr4+:forsterite crystal with an absorption coefficient of 0.57 cm-1 yielded as much as 900 mW of output power at 1.26 μm and a crystal temperature of 15 °C with an incident pump power of only 7.6 W. To the author’s knowledge, the demonstrated slope efficiency of 30% represents the highest continuous-wave power performance reported to date from this laser system at elevated temperatures.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
    [CrossRef]
  2. V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
    [CrossRef] [PubMed]
  3. A. Seas, V. Petricevic, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991).
    [CrossRef] [PubMed]
  4. A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
    [CrossRef] [PubMed]
  5. A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
    [CrossRef] [PubMed]
  6. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
    [CrossRef] [PubMed]
  7. V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
    [CrossRef] [PubMed]
  8. T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
    [CrossRef] [PubMed]
  9. T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
    [CrossRef]
  10. E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
    [CrossRef]
  11. B. Golubovic, B. E. Bouma, I. P. Bilinsky, J. G. Fujimoto, V. P. Mikhailov, “Thin crystal, room-temperature Cr4+:forsterite laser using near-infrared pumping,” Opt. Lett. 21, 1993–1995 (1996).
    [CrossRef] [PubMed]
  12. R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.
  13. A. Sennaroglu, “Continuous wave thermal loading in saturable absorbers: theory and experiment,” Appl. Opt. 36, 9528–9535 (1997).
    [CrossRef]
  14. A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
    [CrossRef]
  15. A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
    [CrossRef]
  16. S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
    [CrossRef]
  17. A. Sennaroglu, C. R. Pollock, H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]

1997 (1)

1996 (1)

1995 (1)

1994 (1)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

1993 (3)

1992 (3)

1991 (3)

1989 (1)

1988 (2)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Alfano, R. R.

Anzai, H.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Behrens, E. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Bilinsky, I. P.

Bouma, B. E.

Carrig, T. J.

Chase, L. L.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Cousins, A. K.

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

French, P. M. W.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Fujimoto, J. G.

Gayen, S. K.

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Golubovic, B.

Jani, M. G.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Krupke, W. F.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Mellish, R.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Mikhailov, V. P.

Minkov, B. I.

Nathel, H.

Newkirk, H. W.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Pang, Y.

Payne, S. A.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Petricevic, V.

Pinto, A.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Pollock, C. R.

Powell, R. C.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Seas, A.

Sennaroglu, A.

Smith, L. K.

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

Taylor, J. R.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Tong, Y. P.

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Verdun, H. R.

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

Wise, F.

Yamagashi, K.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yamaguchi, Y.

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

Yanovsky, V.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

V. Petricevic, S. K. Gayen, R. R. Alfano, K. Yamagashi, H. Anzai, Y. Yamaguchi, “Laser action in chromium-doped forsterite,” Appl. Phys. Lett. 52, 1040–1042 (1988).
[CrossRef]

IEEE J. Quantum Electron. (5)

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of tunable femtosecond pulses in the 1.21–1.27 μm and 605–635 nm wavelength region by using a regeneratively initiated self-mode-locked Cr:forsterite laser,” IEEE J. Quantum Electron. 30, 1851–1861 (1994).
[CrossRef]

A. K. Cousins, “Temperature and thermal stress scaling in finite-length end-pumped laser rods,” IEEE J. Quantum Electron. 28, 1057–1069 (1992).
[CrossRef]

S. A. Payne, L. L. Chase, H. W. Newkirk, L. K. Smith, W. F. Krupke, “LiCaAlF6:Cr3+: a promising new solid-state laser material,” IEEE J. Quantum Electron. 24, 2243–2252 (1988).
[CrossRef]

T. J. Carrig, C. R. Pollock, “Performance of a continuous-wave forsterite laser with krypton ion, Ti:sapphire, and Nd:YAG pump lasers,” IEEE J. Quantum Electron. 29, 2835–2844 (1993).
[CrossRef]

E. G. Behrens, M. G. Jani, R. C. Powell, H. R. Verdun, A. Pinto, “Lasing properties of chromium-aluminum-doped forsterite pumped with an alexandrite laser,” IEEE J. Quantum Electron. 27, 2042–2049 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Lett. (8)

B. Golubovic, B. E. Bouma, I. P. Bilinsky, J. G. Fujimoto, V. P. Mikhailov, “Thin crystal, room-temperature Cr4+:forsterite laser using near-infrared pumping,” Opt. Lett. 21, 1993–1995 (1996).
[CrossRef] [PubMed]

V. Petricevic, S. K. Gayen, R. R. Alfano, “Continuous-wave laser operation of chromium-doped forsterite,” Opt. Lett. 14, 612–614 (1989).
[CrossRef] [PubMed]

A. Seas, V. Petricevic, R. R. Alfano, “Continuous-wave mode-locked operation of a chromium-doped forsterite laser,” Opt. Lett. 16, 1668–1670 (1991).
[CrossRef] [PubMed]

A. Sennaroglu, T. J. Carrig, C. R. Pollock, “Femtosecond pulse generation by using an additive-pulse mode-locked chromium-doped forsterite laser operated at 77 K,” Opt. Lett. 17, 1216–1218 (1992).
[CrossRef] [PubMed]

A. Seas, V. Petricevic, R. R. Alfano, “Generation of sub-100-fs pulses from a cw mode-locked chromium-doped forsterite laser,” Opt. Lett. 17, 937–939 (1992).
[CrossRef] [PubMed]

A. Sennaroglu, C. R. Pollock, H. Nathel, “Generation of 48-fs pulses and measurement of crystal dispersion by using a regeneratively initiated self-mode-locked chromium-doped forsterite laser,” Opt. Lett. 18, 826–828 (1993).
[CrossRef] [PubMed]

V. Yanovsky, Y. Pang, F. Wise, B. I. Minkov, “Generation of 25-fs pulses from a self-mode-locked Cr:forsterite laser with optimized group-delay dispersion,” Opt. Lett. 18, 1541–1543 (1993).
[CrossRef] [PubMed]

T. J. Carrig, C. R. Pollock, “Tunable, cw operation of a multiwatt forsterite laser,” Opt. Lett. 16, 1662–1664 (1991).
[CrossRef] [PubMed]

Other (1)

R. Mellish, Y. P. Tong, P. M. W. French, J. R. Taylor, “All-solid-state Kerr lens mode-locked Cr4+:forsterite and Cr4+:YAG laser systems,” in Advanced Solid-State Lasers, C. R. Pollock, W. R. Bosenberg, eds., Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1997), pp. 332–335.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup of the Cr4+:forsterite laser used in cw thermal loading experiments. See Section 2 for a description of the abbreviations.

Fig. 2
Fig. 2

Measured and calculated variations of cw power transmission τ P as a function of the beam waist location z f for samples 1 and 3 (T b = 21 °C and P i = 4.4 W).

Fig. 3
Fig. 3

Measured and calculated variations of cw power transmission τ P as a function of the incident pump power P i for samples 1 and 3 (T b = 21 °C and z f = 0.15 and 0.9 cm for samples 1 and 3, respectively).

Fig. 4
Fig. 4

Measured variation of the cw and 50% duty-cycle output power as a function of the crystal boundary temperature T b for sample 1 (P i = 4.8 W).

Fig. 5
Fig. 5

Comparative variation of the cw output power for samples 1 and 2 as a function of the crystal boundary temperature T b (P i = 5.6 W).

Fig. 6
Fig. 6

Measured variation of the cw output power at 1.26 μm as a function of the incident pump power P i for samples 1, 2, and 3 (T b = 15 °C).

Fig. 7
Fig. 7

Measured variation of the cw output power as a function of the crystal boundary temperature T b for samples 1, 2, and 3 (P i = 6.2 W).

Fig. 8
Fig. 8

Measured variation of the incident threshold pump power as a function of the crystal boundary temperature T b for samples 1, 2, and 3.

Fig. 9
Fig. 9

Fluorescence lifetime as a function of temperature for Cr4+:forsterite.

Fig. 10
Fig. 10

Calculated axial temperature rise T 1(z) inside samples 1, 2, and 3 (P i = 4.4 W).

Tables (3)

Tables Icon

Table 1 Small-Signal Differential Absorption Coefficient α0, Dimensions, and the FOM of the Cr4+:Forsterite Crystals used in the Comparative Study

Tables Icon

Table 2 Representative Values of the Parameters used to Estimate the Axial Temperature Variation T1(z) in Samples 1, 2, and 3

Tables Icon

Table 3 Values of the Various Parameters used to Calculate Round-Trip Loss L and Emission Cross Section σ e

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ P = exp - α 0 L 1 + δ sa 1 + δ sa   exp - α 0 L 1 + δ si 1 + δ si ,
δ sa = 2 P i π ω 2 z I s ,
δ si = 2 P i π ω 2 z I s .
I s = h ν p σ a τ f .
τ f = τ f 0 - τ T T b .
P a th = π ω p 2 + ω c 2 h ν p T + L 4 σ e τ f η p ,
η a = λ p λ c   η p T L + T ,

Metrics