Abstract

A high (14.0-km), cold (-71.0 °C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1–2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ∼22 μm. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [CrossRef] [PubMed]
  2. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [CrossRef] [PubMed]
  3. Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
    [CrossRef]
  4. K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
    [CrossRef]
  5. K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
    [CrossRef]
  6. G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
    [CrossRef]
  7. K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
    [CrossRef]
  8. E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
    [CrossRef]
  9. W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
    [CrossRef]
  10. D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997).
    [CrossRef]
  11. J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
    [CrossRef]
  12. K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903.
  13. K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
    [CrossRef]
  14. C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
    [CrossRef]
  15. P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.
  16. J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

1997 (1)

D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997).
[CrossRef]

1996 (1)

J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
[CrossRef]

1995 (2)

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

1994 (4)

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

1991 (3)

1989 (1)

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

1961 (1)

C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
[CrossRef]

Ackerman, T. P.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Albrecht, B. A.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Ansmann, A.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Arnott, W. P.

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Babb, D. M.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Bauman, J. J.

P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.

Baumgardner, D.

D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997).
[CrossRef]

Chagnon, C. W.

C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
[CrossRef]

Clothiaux, E. E.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Dong, Y. Y.

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Eberhard, W. L.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Eloranta, E. W.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Febvre, G.

J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
[CrossRef]

Gayet, J.-F.

J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
[CrossRef]

Hagen, D. E.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Hallett, J.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

Hamill, P.

P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.

Heymsfield, A. J.

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Jensen, E. J.

P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.

Junge, C. E.

C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
[CrossRef]

Knight, N. C.

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Korolev, A.

D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997).
[CrossRef]

Larson, H.

J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
[CrossRef]

Liou, K. N.

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Lock, J. A.

Mace, G. G.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Manson, J. E.

C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
[CrossRef]

Melfi, S. H.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Michaelis, W.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Miller, M. A.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Peters, R. M.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Poellot, M. R.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Reichardt, J.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Russell, P. B.

P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.

Sassen, K.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[CrossRef] [PubMed]

K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903.

Schwartz, S. E.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Serwazi, M.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Spinhirne, J. D.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Starr, D. O’C.

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Stokes, G. M.

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Syrett, W. J.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Takano, Y.

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

Verlinde, J.

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

Weitkamp, C.

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

Yang, L.

Appl. Opt. (3)

K. Sassen, “Corona-producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
[CrossRef] [PubMed]

J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
[CrossRef] [PubMed]

K. Sassen, N. C. Knight, Y. Takano, A. J. Heymsfield, “Effects of ice-crystal structure on halo formation: cirrus cloud experimental and ray-tracing modeling studies,” Appl. Opt. 30, 4590–4601 (1994).
[CrossRef]

Bull. Am. Meteorol. Soc. (4)

P. Hamill, E. J. Jensen, P. B. Russell, J. J. Bauman, “The life cycle of stratospheric aerosol particles,” Bull. Am. Meteorol. Soc. 78, 1395–1410.

K. Sassen, “Contrail-cirrus and their potential for regional climate change,” Bull. Am. Meteorol. Soc. 78, 1885–1903.

K. Sassen, “The polarization lidar technique for cloud research: a review and current assessment,” Bull. Am. Meteorol. Soc. 72, 1848–1866 (1991).
[CrossRef]

G. M. Stokes, S. E. Schwartz, “The Atmospheric Radiation Measurement (ARM) program: programmatic background and design of the cloud and radiation testbed,” Bull. Am. Meteorol. Soc. 75, 1201–1221 (1994).
[CrossRef]

Geophys. Res. Lett. (1)

J. Reichardt, A. Ansmann, M. Serwazi, C. Weitkamp, W. Michaelis, “Unexpectedly low ozone concentrations in midlatitude tropospheric ice clouds: a case study,” Geophys. Res. Lett. 23, 1929–1932.

J. Atmos. Ocean. Technol. (3)

D. Baumgardner, A. Korolev, “Airspeed corrections for optical array probe sample volumes,” J. Atmos. Ocean. Technol. 14, 1224–1229 (1997).
[CrossRef]

J.-F. Gayet, G. Febvre, H. Larson, “The reliability of the PMS FSSP in the presence of small ice crystals,” J. Atmos. Ocean. Technol. 13, 1300–1310 (1996).
[CrossRef]

E. E. Clothiaux, M. A. Miller, B. A. Albrecht, T. P. Ackerman, J. Verlinde, D. M. Babb, R. M. Peters, W. J. Syrett, “An evaluation of a 94 GHz radar for remote sensing of cloud properties,” J. Atmos. Ocean. Technol. 12, 201–229 (1995).
[CrossRef]

J. Atmos. Sci. (2)

K. Sassen, D. O’C. Starr, G. G. Mace, M. R. Poellot, S. H. Melfi, W. L. Eberhard, J. D. Spinhirne, E. W. Eloranta, D. E. Hagen, J. Hallett, “The 5–6 December 1991 FIRE IFO II jet stream cirrus case study: possible influences of volcanic aerosols,” J. Atmos. Sci. 52, 97–123 (1995).
[CrossRef]

Y. Takano, K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I: single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3–19 (1989).
[CrossRef]

J. Geophys. Res. (1)

W. P. Arnott, Y. Y. Dong, J. Hallett, “Role of small ice crystals in radiative properties of cirrus: a case study, FIRE II, November 22, 1991,” J. Geophys. Res. 99, 1371–1381 (1994).
[CrossRef]

J. Meteorol. (1)

C. E. Junge, C. W. Chagnon, J. E. Manson, “Stratospheric aerosols,” J. Meteorol. 18, 81–110 (1961).
[CrossRef]

Proc. IEEE (1)

K. Sassen, “Advances in polarization diversity lidar for cloud remote sensing,” Proc. IEEE 82, 1907–1914 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Geostationary Operational Environmental Satellite 7 infrared imagery showing the evolution of the cirrus event observed at the CART site at (a) 1800 UTC, 17 April 1994, (b) 1800, 18 April 1994, (c) 0230, 19 April 1994. Note that the shading scheme used in (c) is different from that in (a) and (b) and that the location of the CART site is marked by a dot in north central Oklahoma.

Fig. 2
Fig. 2

Thermodynamic sounding collected by a radiosonde launched at 0230, 19 April 1994, showing (a) temperature (dashed) and potential temperature, (b) wind speed (dashed) and direction, (c) relative humidity (dashed, in percent with respect to ice) compared with a 2-h average of data from of a water vapor Raman lidar (courtesy of S. H. Melfi). MSL, mean sea level.

Fig. 3
Fig. 3

Time–height displays of lidar (a) backscattering (in arbitrary units), (b) linear depolarization ratios (see key at top) from the cirrus cloud layer studied on 19 April from the Southern Great Plains CART site.

Fig. 4
Fig. 4

Expanded PDL relative returned energy display of the cirrus layer, corresponding to the aircraft mission, showing 6-m × 1-s resolution details of cloud-generating features and, as the brightest streaks, contrails from the ascending Citation.

Fig. 5
Fig. 5

Time–height cross section of radar reflectivity factors (see key at top) observed by the PSU 94-GHz cloud radar on the night of 19 April 1994. Like the lidar, the radar was pointing vertically during this period.

Fig. 6
Fig. 6

Time (∼3-min) exposure of a lunar corona obtained at 0351 UTC on 19 April 1994 during a coordinated aircraft and ground-based remote sensing study of a cold cirrus cloud layer over Oklahoma.

Fig. 7
Fig. 7

In situ data from the ascent portion of the Citation flight on 19 April, showing 10-m height-averaged (a) ambient temperature, (b) ozone concentration [in parts per billion by volume (ppbv)]. The abrupt ozone decreases are part of a calibration procedure.

Fig. 8
Fig. 8

As in Fig. 7, except for (a) 2D-C probe shadow/or concentrations, (b) FSSP particle concentrations (note differences in units), (c) FSSP mean particle diameters.

Fig. 9
Fig. 9

Aircraft data from an extended leg close to the cirrus cloud top (13.39 km), showing (a) 2D-C shadow/or, (b) FSSP particle concentrations, (c) FSSP mean particle diameters as functions of time.

Fig. 10
Fig. 10

30-s average FSSP particle-size distribution (dashed curve) fitted with the inserted gamma distribution, obtained near the cloud top from 0236:35 to 0237:05 when no 2D-C counts were measured. The data points with error bars represent an analysis of Cloudscope data for a 5-s period starting at 0236:05.

Fig. 11
Fig. 11

Typical video Cloudscope image of impacted ice particles collected under the indicated conditions. Note the preponderance of ∼25-μm particles.

Fig. 12
Fig. 12

Synopsis of Cloudscope observations of particle-size distributions as the aircraft ascended through the cirrus cloud layers.

Fig. 13
Fig. 13

Examples of Formvar-preserved ice particles collected near (a) the cloud base, (b) the cloud top at the indicated times and temperatures on 19 April. Note the inserted scales in micrometers.

Metrics