Abstract

A vague glory display was photographed over central Utah from an airplane beginning its descent through a cirrus cloud layer with an estimated cloud top temperature of -45 and -55 °C. Photographic analysis reveals a single reddish-brown ring of 2.5–3.0° radius around the antisolar point, although a second ring appeared visually to have been present over the brief observation period. Mie and approximate nonspherical theory scattering simulations predict a population of particles with modal diameters between 9 and 15 μm. Although it is concluded that multiple-ringed glories can be accounted for only through the backscattering of light from particles that are strictly spherical in shape, the poor glory colorization in this case could imply the presence of slightly aspherical ice particles. The location of this display over mountainous terrain suggests that it was generated by an orographic wave cloud, which we speculate produced numerous frozen cloud droplets that only gradually took on crystalline characteristics during growth.

© 1998 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).
  2. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  3. J. A. Lock, L. Yang, “Mie theory of the corona,” Appl. Opt. 30, 3408–3414 (1991).
    [CrossRef] [PubMed]
  4. K. Sassen, “Corona producing cirrus cloud properties derived from polarization lidar and photographic analyses,” Appl. Opt. 30, 3421–3428 (1991).
    [CrossRef] [PubMed]
  5. K. Sassen, G. G. Mace, J. Hallett, “Corona-producing ice clouds: a case study of a cold midlatitude cirrus layer,” Appl. Opt. 37, 1477–1485 (1998).
    [CrossRef]
  6. E. Trankle, B. Mielke, “Simulation and analysis of pollen coronas,” Appl. Opt. 33, 4552–4562 (1994).
    [CrossRef] [PubMed]
  7. L. M. Miloshevich, A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: instrument design, performance, and collection efficiency analysis,” J. Atmos. Oceanogr. Technol. 14, 753–768 (1997).
    [CrossRef]
  8. H. C. van de Hulst, “A theory of the anti-coronae,” J. Opt. Soc. Am. 37, 16–22 (1947).
    [CrossRef]
  9. J. D. Spinhirne, T. Nakajima, “Glory of clouds in the near infrared,” Appl. Opt. 33, 4652–4662 (1994).
    [CrossRef] [PubMed]
  10. D. K. Lynch, P. Schwartz, “Origin of the anthelion,” J. Opt. Soc. Am. 69, 383–386 (1979).
    [CrossRef]
  11. R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980), p. 145.
  12. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chap. 7.5.1.
  13. T. S. Fahlen, H. C. Bryant, “Direct observation of surface waves on water droplets,” J. Opt. Soc. Am. 56, 1635–1636 (1966).
    [CrossRef]
  14. D. S. Langley, P. L. Marston, “Glory in backscattering from air bubbles,” Phys. Rev. Lett. 47, 913–916 (1981).
    [CrossRef]
  15. W. P. Arnott, P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 498–506 (1988).
  16. W. P. Arnott, P. L. Marston, “Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water,” Appl. Opt. 30, 3429–3442 (1991).
    [CrossRef] [PubMed]
  17. W. P. Arnott, P. L. Marston, “Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts,” J. Acoust. Soc. Am. 85, 1427–1440 (1989).
    [CrossRef]
  18. A. Mannoni, C. Flesia, P. Bruscaglioni, A. Ismaelli, “Multiple scattering from Chebyshev particles: Monte Carlo simulations for backscattering in lidar geometry,” Appl. Opt. 35, 7151–7164 (1996).
    [CrossRef] [PubMed]
  19. S. Asano, M. Sato, “Light scattering by randomly oriented spheroidal particles,” Appl. Opt. 19, 962–974 (1980).
    [CrossRef] [PubMed]
  20. P. V. Hobbs, Ice Physics (Oxford U. Press, Oxford, 1974).
  21. W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954).
    [CrossRef]
  22. C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
    [CrossRef]
  23. B. Gonda, T. Yamazaki, “Initial growth of snow crystals growing from frozen cloud droplets,” J. Meteorol. Soc. Jpn. 62, 190–192 (1984).
  24. D. Diermendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

1998

1997

L. M. Miloshevich, A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: instrument design, performance, and collection efficiency analysis,” J. Atmos. Oceanogr. Technol. 14, 753–768 (1997).
[CrossRef]

1996

1994

1991

1989

W. P. Arnott, P. L. Marston, “Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts,” J. Acoust. Soc. Am. 85, 1427–1440 (1989).
[CrossRef]

1988

W. P. Arnott, P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 498–506 (1988).

1984

B. Gonda, T. Yamazaki, “Initial growth of snow crystals growing from frozen cloud droplets,” J. Meteorol. Soc. Jpn. 62, 190–192 (1984).

1981

D. S. Langley, P. L. Marston, “Glory in backscattering from air bubbles,” Phys. Rev. Lett. 47, 913–916 (1981).
[CrossRef]

1980

1979

C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

D. K. Lynch, P. Schwartz, “Origin of the anthelion,” J. Opt. Soc. Am. 69, 383–386 (1979).
[CrossRef]

1966

1954

W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954).
[CrossRef]

1947

Arnott, W. P.

W. P. Arnott, P. L. Marston, “Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water,” Appl. Opt. 30, 3429–3442 (1991).
[CrossRef] [PubMed]

W. P. Arnott, P. L. Marston, “Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts,” J. Acoust. Soc. Am. 85, 1427–1440 (1989).
[CrossRef]

W. P. Arnott, P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 498–506 (1988).

Asano, S.

Bruscaglioni, P.

Bryant, H. C.

Diermendjian, D.

D. Diermendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Fahlen, T. S.

Flesia, C.

Fujita, S.-I.

C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Gonda, B.

B. Gonda, T. Yamazaki, “Initial growth of snow crystals growing from frozen cloud droplets,” J. Meteorol. Soc. Jpn. 62, 190–192 (1984).

Greenler, R.

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980), p. 145.

Hallett, J.

Heymsfield, A. J.

L. M. Miloshevich, A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: instrument design, performance, and collection efficiency analysis,” J. Atmos. Oceanogr. Technol. 14, 753–768 (1997).
[CrossRef]

Hobbs, P. V.

P. V. Hobbs, Ice Physics (Oxford U. Press, Oxford, 1974).

Humphries, W. J.

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

Ismaelli, A.

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chap. 7.5.1.

Langley, D. S.

D. S. Langley, P. L. Marston, “Glory in backscattering from air bubbles,” Phys. Rev. Lett. 47, 913–916 (1981).
[CrossRef]

Lock, J. A.

Lynch, D. K.

Mace, G. G.

Magono, C.

C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Mannoni, A.

Marston, P. L.

W. P. Arnott, P. L. Marston, “Unfolded optical glory of spheroids: backscattering of laser light from freely rising spheroidal air bubbles in water,” Appl. Opt. 30, 3429–3442 (1991).
[CrossRef] [PubMed]

W. P. Arnott, P. L. Marston, “Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts,” J. Acoust. Soc. Am. 85, 1427–1440 (1989).
[CrossRef]

W. P. Arnott, P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 498–506 (1988).

D. S. Langley, P. L. Marston, “Glory in backscattering from air bubbles,” Phys. Rev. Lett. 47, 913–916 (1981).
[CrossRef]

Mielke, B.

Miloshevich, L. M.

L. M. Miloshevich, A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: instrument design, performance, and collection efficiency analysis,” J. Atmos. Oceanogr. Technol. 14, 753–768 (1997).
[CrossRef]

Nakajima, T.

Robinson, E.

W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954).
[CrossRef]

Sassen, K.

Sato, M.

Schwartz, P.

Spinhirne, J. D.

Taniguchi, T.

C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

Thuman, W. C.

W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954).
[CrossRef]

Trankle, E.

van de Hulst, H. C.

H. C. van de Hulst, “A theory of the anti-coronae,” J. Opt. Soc. Am. 37, 16–22 (1947).
[CrossRef]

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

Yamazaki, T.

B. Gonda, T. Yamazaki, “Initial growth of snow crystals growing from frozen cloud droplets,” J. Meteorol. Soc. Jpn. 62, 190–192 (1984).

Yang, L.

Appl. Opt.

J. Acoust. Soc. Am.

W. P. Arnott, P. L. Marston, “Unfolding axial caustics of glory scattering with harmonic angular perturbations of toroidal wavefronts,” J. Acoust. Soc. Am. 85, 1427–1440 (1989).
[CrossRef]

J. Atmos. Oceanogr. Technol.

L. M. Miloshevich, A. J. Heymsfield, “A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: instrument design, performance, and collection efficiency analysis,” J. Atmos. Oceanogr. Technol. 14, 753–768 (1997).
[CrossRef]

J. Atmos. Sci.

C. Magono, S.-I. Fujita, T. Taniguchi, “Unusual types of single ice crystals originating from frozen cloud droplets,” J. Atmos. Sci. 36, 2495–2501 (1979).
[CrossRef]

J. Meteorol.

W. C. Thuman, E. Robinson, “Studies of Alaskan ice-fog particles,” J. Meteorol. 11, 151–156 (1954).
[CrossRef]

J. Meteorol. Soc. Jpn.

B. Gonda, T. Yamazaki, “Initial growth of snow crystals growing from frozen cloud droplets,” J. Meteorol. Soc. Jpn. 62, 190–192 (1984).

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

W. P. Arnott, P. L. Marston, “Optical glory of small freely rising gas bubbles in water: observed and computed cross-polarized backscattering patterns,” J. Opt. Soc. Am. A 5, 498–506 (1988).

Phys. Rev. Lett.

D. S. Langley, P. L. Marston, “Glory in backscattering from air bubbles,” Phys. Rev. Lett. 47, 913–916 (1981).
[CrossRef]

Other

W. J. Humphries, Physics of the Air (McGraw-Hill, New York, 1929).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).

P. V. Hobbs, Ice Physics (Oxford U. Press, Oxford, 1974).

R. Greenler, Rainbows, Halos, and Glories (Cambridge U. Press, Cambridge, 1980), p. 145.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969), Chap. 7.5.1.

D. Diermendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Photomicrographs of newly formed ice crystals sampled from a cirrus wave cloud over Boulder, Colo., on 13 November 1996, collected at (a) -40.0 °C and 9.35 km, (b) -48.6 °C and 10.13 km. For scale, note that the bars at top left are 100 μm in length.

Fig. 2
Fig. 2

Wide-angle aerial photograph of a vague glory display taken just before the aircraft started its descent through a cirrus cloud layer at 2358 UTC on 20 January 1995.

Fig. 3
Fig. 3

Aerial photograph taken with a 55-m lens of the rare anthelion with a segment of the subparhelic circle, taken at 2049 UTC on 8 October 1996 above the cirrus cloud shield produced by hurricane Josephine.

Fig. 4
Fig. 4

Schematic representation of (a) the ray paths, (b) the toroidal wave front of backscattered light responsible for glory formation. A distorted toroidal wave front for slightly nonspherical particles is shown in (c).

Fig. 5
Fig. 5

Examples of the shapes of zeroth-order logarithmic particle-size distributions created to simulate polydisperse clouds.

Fig. 6
Fig. 6

Mie theory predictions of the phase functions in the backscattering region for populations of spheres with the indicated modal radii, showing the effects of particle size on the glory ring maxima.

Fig. 7
Fig. 7

Results from Mie theory of the angular position of the first- through third-order red-colored glory rings as a function of the modal ice-sphere radii between 2 and 12 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

P r = exp - log   r - log   r m 2 2 σ 0 2 2 π 1 / 2 σ 0 r m exp σ 0 2 / 2 .
γ = 2 δ / b ,
γ = n π Γ / 2 .
π - θ = 2.405 λ / π D .
Γ = 4.81 λ / n π 2 D

Metrics